R. A. Oliveira et al.
1
DMSO residual peak as the H internal reference (2.5 ppm); and
Organic Syntheses via Boranes, vol. 2, Aldrich Chemical: Milwaukee,
WI, 2001; (c) A. Suzuki, H. C. Brown, Organic Syntheses via Boranes,
vol. 3, Aldrich Chemical: Milwaukee, WI, 2003.
the central peak of DMSO-d6 at 39.5 ppm for 13C NMR. 11B NMR
spectra were calibrated using BF3· Et2O (0.0 ppm) as external
reference. All 19F NMR chemical shifts were referenced to external
CF3CO2H (0.0 ppm).
[3] (a) G. A. Molander, R. Figueroa, Aldrichim. Acta 2005, 38, 49; (b)
H. A. Stefani, R. Cella, A. S. Vieira, Tetrahedron 2007, 63, 3623; (c)
G. A. Molander, N. Ellis, Acc. Chem. Res. 2007, 40, 275.
Typical parameters were as follows: 1H NMR: Pulse angle of
45◦, acquisition time of 3.6 s, 16 repetitions and, spectral width of
15 ppm. 13C NMR: Pulse angle of 90◦, delay of 2.3 s, acquisition
time of 1.7 s, 1024 repetitions, and, spectral width of 250 ppm. 19F
NMR: Pulse angle of 45◦, delay of 1.0 s, acquisition time of 0.3 s,
80 repetitions, line broadening of 0.3 Hz and, a spectral width of
177 ppm. All 11B NMR spectra were obtained using a S2PUL pulse
sequence (VARIAN) which consists in a first pulse of 90◦, a delay of
0.5 s, and a second pulse of 180◦, followed by an acquisition time
of 1.0 s. The spectra were recorded as 128 repetitions, spectral
width of 171 ppm, and processed with line broadening of 5 Hz.
For all nuclei spectra the temperature was maintained within
1 ◦C by using a Varian temperature unit.
The parameters to obtain standard 11B NMR spectra (128 MHz)
using a Bruker spectrometer were as follows: zgpg30 pulse
sequence (Bruker) which consists in a single pulse sequence with
p1 = 7 µs (90◦) and a two level Waltz decoupling scheme with
lower power during 1 s recycle delay and higher power during
pulse and acquisition. The delay was 1.0 s and the spectrum was
recorded using 128 repetitions, with 5 Hz line broadening and
1 Hz.
[4] A. N. Thadani, R. A. Batey, Org. Lett. 2002, 4, 3827.
[5] (a) Y. Ma, C. Song, C. Ma, Z. Sun, Q. Chai, M. B. Andrus, Angew.Chem.,
Int. Ed. 2003, 42, 5871; (b) A. Duursma, L. Lefort, J. A. F. Boogers,
A. H. M. de Vries, J. G. de Vries, A. J. Minnard, B. L. Feringa, Org.
Biomol. Chem. 2004, 2, 1682; (c) A. Duursma, J.-G. Boiteau, L. Lefort,
J. A. F. Boogers, A. H. M. de Vries, J. G. de Vries, A. J. Minnard,
B. L. Feringa, J. Org. Chem. 2004, 69, 8045.
[6] J.-P. Tremblay-Morin, S. Raeppel, F. Gaudette, Tetrahedron Lett.
2004, 45, 3471.
[7] T. D. Quach, R. A. Batey, Org. Lett. 2003, 5, 1381.
[8] T. D. Quach, R. A. Batey, Org. Lett. 2003, 5, 4397.
[9] (a) G. W. Kabalka, A. R. Mereddy, Tetrahedron Lett. 2004, 45, 343; (b)
G. W. Kabalka, A. R. Mereddy, Tetrahedron Lett. 2004, 45, 1417.
[10] M. Pucheault, S. Darses, J.-P. Genet, J. Am. Chem. Soc. 2004, 126,
15356.
[11] S. Darses, J.-P. Genet, Chem. Rev. 2008, 108, 288.
[12] R. Smoum, A. Rubinstein, M. Srebnik, Org. Mol. Chem. 2005, 3, 941.
[13] R. A. Oliveira,
G. A. Molander, Basic
2009, 104, 448.
L. Savegnago,
C. R. Jesse,
P. H. Menezes,
&
Clinical Pharmacology
&
Toxicology
[14] Y. Yamamoto, K. Hattori, J.-I. Ishii, H. Nishiyama, Tetrahedron 2006,
62, 4294.
[15] S. Darses, G. Michaud, J.-P. Genet, Eur. J. Org. Chem. 1999, 8, 1875.
[16] M. W. Paixao, M. Weber, A. L. Braga, J. B. Azeredo, A. M. Deobald,
H. A. Stefani, Tetrahedron Lett. 2008, 49, 2366.
[17] G. A. Molander, D. J. Cooper, J. Org. Chem. 2007, 72, 3558.
[18] G. A. Molander, J. Ham, Org. Lett. 2006, 8, 2031.
[19] (a) E. Vedejs, R. W. Chapman, S. C. Fields, S. Lin, M. R. Schrimpf, J.
Org. Chem. 1995, 60, 3020; (b) G. A. Molander, B. Biolatto, Org. Lett.
2002, 4, 1867; (c) G. A. Molander, B. Biolatto, J. Org. Chem. 2003, 68,
4302.
[20] (a)K. R. Metz,M. M. Lam,A. G. Webb,ConceptsMag.Res.2000,12,21;
(b) A. O. Clouse, D. C. Moody, R. R. Rietz, T. Roseberry, R. Schaeffer,
J. Am. Chem. Soc. 1973, 95, 2496.
[21] E. Vedejs, S. C. Fields, R. Hayashi, S. R. Hithccock, D. R. Powell,
M. R. Schrimpf, J. Am. Chem. Soc. 1999, 121, 2460.
[22] (a) J. Battiste, R. A. Newmark, Prog. Nuc. Magn. Res. 2006, 48, 1; (b)
J. T. Gerig, Prog. Nuc. Magn. Res. 1994, 26, 293.
[23] E. R. Andrew, Philos. Trans. R. Soc. London Ser. A 1981, 299, 505.
[24] (a) J. San Fabian, A. J. A. W. Hoekzema, J. Chem. Phys. 2004, 121,
6268; (b) J. W. Emsley, L. Phillips, V. Wray, Prog. Nuc. Magn. Res.
1976, 10, 83.
[25] C. J. Jameson, A. K. Jameson, H. Parker, J.Chem.Phys. 1978, 69, 1318.
[26] R. Ting, C. W. Harwig, J. Lo, Y. Li, M. J. Adam, T. J. Ruth, D. M. Perrin,
J. Org. Chem. 2008, 73, 4662.
Conclusion
Inthisstudy,complete1H,13C,19F,and11BNMRspectraldatafor28
potassium organotrifluoroborates were described. The resonance
for the carbon bearing the boron atom is described for the first
time for most of the studied compounds. In addition, a modified
11B NMR pulse sequence was used and better resolution was
observed, allowing the observation of 11B–19F coupling constants
for some compounds.
References
[1] N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 20, 3437.
[2] (a) H. C. Brown, Organic Syntheses via Boranes, vol. 1, Aldrich
Chemical: Milwaukee, WI, 1997; (b) H. C. Brown, M. Zaidlewicz,
c
Copyright ꢀ 2009 John Wiley & Sons, Ltd.
Magn. Reson. Chem. 2009, 47, 873–878