UPDATES
NMR (75 MHz, CDCl3) d 166.6, 132.7, 130.5, 129.5,128.3,
60.9, 14.3.
1
2
3
4
5
6
7
8
9
in only 7% when the reaction was performed with
monosubstituted oxalate. CO is then inserted into the
Pd(II)-Ar bond via a coordination with the metal.
Ligand exchange of bromide by ethanolate or ethanol
and reductive elimination give the ester. It is worth
noting that, when the reaction was performed in the
presence of diethyloxalate and methanol as solvent, a
mixture of methyl- and ethylesters was obtained in a
1/3 ratio. This result confirms that both ethanol and
Acknowledgements
`
Chevreul institute (FR 2638), Ministere de l’Enseignement
´
´
Superieur et de la Recherche, Region Nord – Pas de Calais
and FEDER are acknowledged for supporting and funding
this work.
10 ethanolate could react in the ligand exchange step or
11 in a transesterification reaction.
References
12
13
14
15
16
17
18
19
20
21
22
23
24
25
[1] For reviews see: a) H. Neumann, M. Beller, Angew.
Chem., Int. Ed. 2009, 48, 4114–4133; b) C. F. J. Barnard,
Organometallics 2008, 27, 5402–5422; c) A. Brennfuhrer,
X. F. Wu, H. Neumann, M. Beller, Chem. Soc. Rev.
2011, 40, 4986–5009. d) X. F. Wu, H. Neumann, M.
Beller, Chem. Rev. 2013, 113, 1–35; e) B. Gabriele, R.
Mancuso, G. Salerno, Eur. J. Org. Chem. 2012, 6825–
6839; f) Q. Liu, H. Zhang, A. Lei, Angew. Chem. Int.
Ed. 2011, 50, 10788–10799.
[2] T. Morimoto, K. Kakiuchi, Angew. Chem. Int. Ed. 2004,
43, 5580–5588.
[3] a) L. R. Odell, F. Russo, M. Larhed, Synlett 2012, 685–
698; b) Y. Wan, M. Alterman, M. Larhed, A. Hallberg,
J. Org. Chem. 2002, 67, 6232–6235; c) J. Wannberg, M.
Larhed, J. Org. Chem. 2003, 68, 5750–5753; d) Z. Wang,
Y. Li, F. Zhu, X. F. F. Wu, Adv. Synth. Catal. 2016, 358,
2855–2859.
26
27
28
29
Scheme 2. Proposed mechanism.
In conclusion, we developed a new Palladium(II)-
[4] a) G. Makado, T. Morimoto, Y. Sugimoto, K. Tsutsumi,
N. Kagawa, K. Kakiuchi, Adv. Synth. Catal. 2010, 352,
299–304; b) A. Kopfer, B. Sam, B. Breit, M. J. Krische,
Chem. Sci. 2013, 4, 1876–1880; c) Q. Liu, K. Yuan, P.-B.
Arockiam, R. Franke, H. Doucet, R. Jackstell, M.
Beller, Angew. Chem., Int. Ed. 2015, 54, 4493–4497;
d) K. Natte, A. Dumrath, H. Neumann, M. Beller,
Angew. Chem. Int. Ed. 2014, 53, 10090–10094; e) T.
Morimoto, K. Fuji, K. Tsutsumi, K. Kakiuchi, J. Am.
Chem. Soc. 2002, 124, 3806–3807; f) T. Shibata, N.
Toshida, K. Takagi, Org. Lett. 2002, 4, 1619–1621; g) W.
Li, X. F. Wu, J. Org. Chem. 2014, 79, 10410–10416;
[5] D. S. Friis, R. H. Taaning, A. T. Lindhardt, T. Skrydstr-
up, J. Am. Chem. Soc. 2011, 133, 18114–18117.
[6] a) N. Lugan, G. Lavigne, J.-M. Soulie, S. Fabre, P. Kalck,
J.-Y. Saillard, J. Francois Halet, Organometallics 1995,
14, 1712–1731; b) H. W. Lee, A. S. C. Chana, F. Y.
Kwong, Chem. Commun. 2007, 2633–2635; c) T. Cochet,
V. Bellosta, A. Greiner, D. Roche, J. Cossy, Synlett 2011,
1920–1922; d) T. Ueda, H. Konishi, K. Manabe, Org.
Lett. 2013, 15, 5370–5373; e) P. H. Gehrtz, V. Hirsch-
beck, I. Fleischer, Chem. Commun. 2015, 51, 12574–
12577; f) H. Konishi, T. Ueda, T. Muto, K. Manabe,
Org. Lett. 2012, 14, 4722–4725; g) I. Fleischer, R.
Jennerjahn, D. Cozzula, R. Jackstell, R. Franke, M.
Beller, ChemSusChem 2013, 6, 417–420; h) H. Koniski,
H. Nagase, K. Manabe, Chem. Commun. 2015, 51,
1854–1857; i) H. Li, H. Neumann, M. Beller, X. F. Wu
Angew Chem. Int. Ed. 2014, 53,3183–3186; j) Y. Kata-
30 catalyzed ethoxycarbonylation of aryl bromides with
31 alkyl oxalate as carbon monoxide source. This method
32 presents many advantages: microwave activation, non-
33 toxic solvent, no additional ligand, extended to aryl
34 chlorides, no nitrogen atmosphere. In consequence,
35 this method illustrates an inexpensive and operation-
36 ally simple method for the preparation of aromatic
37 esters.
38
39
40
Experimental Section
41 General Procedure
42
Bromobenzene 1a (157 mg, 1 mmol), diethyloxalate
2
43
44
45
46
47
(180 mg, 1.2 mmol), DMAP (153 mg, 1.2 mmol), PdCl2
(PPh3)2 (4.7 mg, 6.10À3 mmol) were taken in an oven-dried
test tube equipped with a magnetic stir bar and a Teflon
screw-cap using EtOH (142 mg, 3 mmol) as solvent. The
reaction mixture was then irradiated in a closed vessel
48 monomode microwave at 1408C for 20 min. At 1308C, the
pressure reached 5–7 bar. After cooling to ambient temper-
ature, an aqueous solution HCl 1 M (5 mL) was added and
the reaction mixture was extracted with diethyl ether (33
10 mL). The combined organic layers were dried over
MgSO4 and evaporated under reduced pressure. The purifi-
cation by chromatography over silica gel afforded methyl
49
50
51
52
53
54
55
56
57
1
benzoate ester 3a as oil (128 mg, 85%); H NMR (300 MHz,
CDCl3) d 8.05 (dd, J=8.4 and 1.5 Hz, 2H), 7.54 (m, 1H), 7.42
(m, 2H), 4.37 (t, J=7.2 Hz, 2H), 1.39 (t, J=7.2 Hz, 3H). 13C
Adv. Synth. Catal. 2017, 359, 1–7
5
ꢀ 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!