K. Niknam et al. / Tetrahedron Letters 50 (2009) 4058–4062
4061
Table 4
Competitive acylal formation from aldehydes in the presence of ketones using SBSSA under solvent-free conditionsa
Entry
Substrates
Product (selectivity%)b
H
O
O
OAc
OAc
OAc
OAc
1
H
(0%)
(100%)
H
O
O
OAc
OAc
OAc
OAc
2
H
Cl
Cl
Cl
Cl
(0%)
(100%)
a
Reaction conditions: Substrate (1 mmol each), acetic anhydride (15 mmol), catalyst (0.005 g), 5 min at rt.
Conversion.
b
21.77, 84.34, 124.21, 124.79, 126.26, 130.05, 145.98, 153.14,
168.64, 168.74. Anal. Calcd for C13H13NO8: C, 50.17; H, 4.21; N,
4.50. Found: C, 49.87; H, 4.11; N, 4.27.
Compound 4l: IR (KBr): 3480, 3002, 2805, 1750, 1601, 1476,
1437, 1365, 1240, 1200, 1168, 1090, 1040, 970, 942, 880, 759,
723 cmÀ1 1H NMR (500 MHz, CDCl3): d (ppm) 2.07 (s, 12H), 2.32
.
(s, 3H), 3.84 (s, 3H), 7.18 (s, 2H), 7.76 (s, 2H). 13C NMR (125 MHz,
CDCl3): (ppm) 20.96, 21.09, 56.25, 85.22, 115.06, 130.53,
d
139.82, 158.04, 168.66, 170.44. Anal. Calcd for C19H22O11: C,
53.52; H, 5.20. Found: C, 53.20; H, 5.00.
Compound 4m: IR (KBr): 3005, 2820, 1756, 1580, 1430, 1367,
1240, 1200, 1158, 1060, 998, 942, 903, 802, 705 cmÀ1 1H NMR
.
(500 MHz, CDCl3): d (ppm) 2.12 (s, 12H), 7.44 (t, 1H, J = 7.5 Hz),
7.55 (d, 2H, J = 7.5 Hz), 7.65 (s, 1H), 7.68 (s, 2H). 13C NMR
(125 MHz, CDCl3): d (ppm) 21.27, 89.66, 125.44, 128.59, 129.42,
136.49, 169.13. Anal. Calcd for C16H18O8: C, 56.80; H, 5.36. Found:
C, 56.51; H, 5.14.
Figure 1. Recyclability of SBSSA (0.005 g) in the reaction of p-methylbenzaldehyde
(1 mmol) and acetic anhydride (15 mmol) at room temperature. Reaction
time = 4 min.
Acknowledgement
added dropwise at 0 °C over 2 h. After the addition was complete,
the mixture was stirred for another 2 h and then filtered, the solid
washed with methanol (30 mL) and dried at room temperature to
afford silica-bonded S-sulfonic acid as a cream powder (5.22 g).
Elemental analysis showed the S content to be 16.12%. Typically
a loading of 0.35 mmol/g was obtained. When SBSSA was placed
in aqueous NaCl solution, the pH of the solution dropped almost
instantaneously to pH ꢀ1.85, as ion exchange occurred between
the protons and sodium ions (proton exchange capacity:
0.34 mmol/g of SBSSA.
We are thankful to Persian Gulf University Research Council for
partial support of this work.
References and notes
1. Choudhary, D.; Paul, S.; Gupta, R.; Clark, J. H. Green Chem. 2006, 8, 479.
2. Riego, J. M.; Sedin, Z.; Zaldivar, J. M.; Marziano, N. C.; Tortato, C. Tetrahedron
Lett. 1996, 37, 513.
3. Corma, A.; Garcia, H. Chem. Rev. 2002, 102, 3837.
4. Karimi, B.; Khalkhali, M. J. Mol. Catal. A: Chem. 2005, 232, 113.
5. Karimi, B.; Zareyee, D. Tetrahedron Lett. 2005, 46, 4661.
6. Melero, J. A.; Van Grieken, R.; Morales, G. Chem. Rev. 2006, 106, 3790.
7. Karimi, B.; Abedi, S.; Clark, J. H.; Budarin, V. Angew. Chem., Int. Ed. 2006, 45,
4776.
1.2. General procedure for acylation
8. Greene, T. W.; Wuts, P. G. M. Greene’s Protective Groups in Organic Synthesis, 4th
ed.; Wiley: New York, 2007.
9. Kochhar, K. S.; Bal, B. S.; Deshpande, R. P.; Rajadhyaksha, S. N.; Pinnick, H. W. J.
Org. Chem. 1983, 48, 1765.
10. Trost, B. M.; Lee, C. J. Am. Chem. Soc. 2001, 123, 12191.
11. Sandberg, M.; Sydnes, L. K. Org. Lett. 2000, 2, 687.
12. Held, H.; Rengstle, A.; Mayer, A., 5th ed.. In Ullman’s Encyclopedia of Industrial
Chemistry; Gerhartz, W., Ed.; Wiley-VCH: New York, 1985; Vol 1.
13. Freeman, F.; Karcherski, E. M. J. Chem. Eng. Data 1977, 22, 355.
14. Frick, J. G., Jr.; Harper, R. J., Jr. J. Appl. Polym. Sci. 1984, 29, 1433.
15. Van Heerden, F. R.; Huyser, J. J.; Bradley, D.; Williams, G.; Holzapfel, C. W.
Tetrahedron Lett. 1998, 39, 5281.
To a mixture of aldehyde (1 mmol) and acetic anhydride
(15 mmol) was added SBSSA catalyst (5 mg) and the mixture was
stirred at room temperature. When the reaction was complete as
judged by TLC, CH2Cl2 (5 mL) was added and the reaction mixture
was filtered and the remaining solid was washed with CH2Cl2
(3 Â 5 mL) in order to separate the catalyst. The CH2Cl2 layer was
washed with water (2 Â 10 mL) and dried over anhydrous MgSO4.
After removal of the solvent in vacuo, the obtained residue was
recrystallized from ethanol.
16. Sandberg, M.; Sydnes, L. K. Tetrahedron Lett. 1998, 39, 6361.
17. Gregory, M. J. J. Chem. Soc. B 1970, 1201.
18. Carrigan, M. D.; Eash, K. J.; Oswald, M. C.; Mohan, R. S. Tetrahedron Lett. 2001,
42, 8133.
2. Spectral data
19. Firouzabadi, H.; Iranpoor, N.; Nowrouzi, F.; Amani, K. Tetrahedron Lett. 2003, 44,
Compound 4k: IR (KBr): 3010, 2800, 1610, 1565, 1515, 1430,
3951.
1340, 1258, 1235, 1160, 1060, 902, 821, 728 cmÀ1 1H NMR
.
20. Kumar, P.; Hegde, V. R.; Kumar, T. P. Tetrahedron Lett. 1995, 36, 601.
21. Yadav, J. S.; Reddy, B. V. S.; Venugopal, C.; Ramalingam, T. Synlett 2002, 604.
22. Nagy, N. M.; Jakab, M. A.; Konya, J.; Antus, S. Appl. Clay Sci. 2002, 21, 213.
23. Ghosh, R.; Maiti, S.; Chakraborty, A.; Halder, R. J. Mol. Catal. A: Chem. 2004, 215,
49.
(500 MHz, CDCl3): d (ppm) 2.13 (s, 6H), 2.37 (s, 3H), 7.34 (d, 1H,
J = 8.9 Hz), 7.93 (s, 1H), 8.29 (dd, 1H, J1 = 8.9 Hz, J2 = 2.7 Hz), 8.53
(d, 1H, J = 2.7 Hz). 13C NMR (125 MHz, CDCl3): d (ppm) 21.09,