Please do not adjust margins
Chemical Science
Page 6 of 8
Edge Article
Chemical Science
DOI: 10.1039/C9SC03169C
Adv. Synth. Catal., 2011, 353, 1825; (e) M. L. Crawley and B.
M. Trost, Applications of Transition Metal Catalysis in Drug
Discovery and Development: An Industrial Perspective, Wiley,
2012; (f) A. Molnar, Palladium-Catalyzed Coupling Reactions:
Practical Aspects and Future Developments, Wiley, 2013.
T. J. Colacot, New Trends in Cross-Coupling, 1st ed., The Royal
Society of Chemistry, 2015.
For recent pertinent reviews, see: (a) P. G. Gildner and T. J.
Colacot, Organometallics, 2015, 34, 5497; (b) L. C. Campeau
and N. Hazari, Organometallics, 2019, 38, 3; (c) I. P.
Beletskaya, F. Alonso and V. Tyurin, Coord. Chem. Rev., 2019,
385, 137.
5
6
7
8
A. Greenberg, C. M. Breneman and J. F. Liebman, The Amide
Linkage: Structural Significance in Chemistry, Biochemistry
and Materials Science, 1st ed., Wiley-VCH, 2003.
(a) V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480
,
471; (b) A. B. Hughes, Amino Acids, Peptides and Proteins in
Organic Chemistry, Wiley, 2011; (c) A. A. Kaspar and J. M.
Reichert, Drug Discov. Today, 2013, 18, 807; (d) S. Ruider and
N. Maulide, Angew. Chem. Int. Ed., 2015, 54, 13856.
9
Reactions involving amide bonds are among the most
commonly employed in chemical industry: (a) S. D. Roughley
and A. M. Jordan, J. Med. Chem., 2011, 54, 3451; For a lead
reference on using amides in polymer chemistry, see: (b) K.
Marchildon, Macromol. React. Eng., 2011,
5, 22;For an
example of non-planar amides in biochemistry, see: (c) C.
Lizak, S. Gerber, G. Michaud, M. Schubert, Y. Y. Fan, M.
Bucher, T. Darbare, M. Aebi, J. L. Reymond and K. P. Locher,
Fig. 3 Intermolecular competition experiments.
Nat. Commun., 2013, 4, 2627.
this reaction has a significant potential to enhance the utility
of amides in cross-coupling reactions of general interest.
10 Reviews on N–C amide cross-coupling: (a) S. Shi, S. P. Nolan
and M. Szostak, Acc. Chem. Res., 2018, 51, 2589; (b) G. Meng
and M. Szostak, Eur. J. Org. Chem., 2018, 20-21, 2352; (c) J. E.
Dander and N. K. Garg, ACS Catal., 2017, 7, 1413; For reviews
on acyl-metals, see: (d) L. J. Gooßen, N. Rodriguez and K.
Gooßen, Angew. Chem. Int. Ed., 2008, 47, 3100; (e) A.
Brennführer, H. Neumann and M. Beller, Angew. Chem. Int.
Ed., 2009, 48, 4114; For reviews on twisted amides, see: (f)
M. Szostak and J. Aubé, Chem. Rev., 2013, 113, 5701; (g) R.
Szostak and M. Szostak, Molecules, 2019, 24, 274.
Acknowledgements
We thank the NSF (CAREER CHE-1650766, M.S.), Rutgers
University (M.S.), NSFC (21702182 and 21873081, X.H.), the
Fundamental Research Funds for the Central Universities (2-
2050205-19-361, X.H.) and Zhejiang University (X.H.) for
generous financial support. The Bruker 500 MHz spectrometer
used in this study was supported by the NSF-MRI grant (CHE-
1229030). Calculations were performed on the high-
performance computing system at the Department of
Chemistry, Zhejiang University.
11 For representative acyl coupling, see: (a) L. Hie, N. F. F.
Nathel, T. K. Shah, E. L. Baker, X. Hong, Y. F. Yang, P. Liu, K. N.
Houk and N. K. Garg, Nature, 2015, 524, 79; (b) G. Meng and
M. Szostak, Org. Lett., 2015, 17, 4364; For a reductive
coupling, see: (c) S. Ni, W. Zhang, H. Mei, J. Han and Y. Pan,
Org. Lett., 2017, 19, 2536; For a review, see: (d) J. Buchspies
and M. Szostak, Catalysts, 2019, 9, 53, and references cited
therein.
12 For representative decarbonylative coupling, see: (a) G.
Notes and references
Meng and M. Szostak, Angew. Chem. Int. Ed., 2015, 54
,
14518; (b) C. Liu and M. Szostak, Angew. Chem. Int. Ed.,
2017, 56, 12718; (c) H. Yue, L. Guo, H. H. Liao, Y. Cai, C. Zhu
and M. Rueping, Angew. Chem. Int. Ed., 2017, 56, 4282; (d)
H. Yue, L. Guo, S. C. Lee, X. Liu and M. Rueping, Angew.
Chem. Int. Ed., 2017, 56, 3972.
1
(a) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457; (b)
A. de Meijere, S. Bräse and M. Oestreich, Metal-Catalyzed
Cross-Coupling Reactions and More, 1st ed., Wiley, 2014; (c)
G. A. Molander, J. P. Wolfe and M. Larhed, Science of
Synthesis: Cross-Coupling and Heck-Type Reactions, 1st ed.,
Thieme, 2013; (d) A. J. J. Lennox and G. C. Lloyd-Jones, Chem.
Soc. Rev., 2014, 43, 412.
13 For additional representative studies, see: For
a
representative tandem reaction, see: (a) J. A. Walker, K. L.
Vickerman, J. N. Humke and L. M. Stanley, J. Am. Chem. Soc.
2017, 139, 10228; For a biomimetic esterification, see: (b) C.
C. D. Wybon, C. Mensch, K. Hollanders, C. Gadals, W. A.
2
For excellent perspectives on the historical importance of
cross-couplings, see: (a) X. F. Wu, P. Anbarasan, H. Neumann
and M. Beller, Angew. Chem. Int. Ed., 2010, 49, 9047; (b) C.
C. C. Johansson-Seechurn, M. O. Kitching, T. J. Colacot and V.
Snieckus, Angew. Chem. Int. Ed., 2012, 51, 5062.
Herrebout, S. Ballet and B. U. W. Maes, ACS Catal., 2018,
203; For a Cr-catalyzed N–C activation, see: (c) C. Chen, P.
Liu, M. Luo and X. Zeng, ACS Catal., 2018, , 5864; For a
8,
8
3
4
A. Suzuki, Angew. Chem. Int. Ed., 2011, 50, 6722.
bond N–C activation, see: (d) Z. B. Zhang, C. L. Ji, C. Yang, J.
Chen, X. Hong and J. B. Xia, Org. Lett., 2019, 21, 1226.
For leading reviews on cross-couplings in chemical industry,
see: (a) C. Torborg and M. Beller, Adv. Synth. Catal., 2009,
351, 3027; (b) M. Beller and H. U. Blaser, Organometallics as
Catalysts in the Fine Chemicals Industry, Springer, 2012; (c) J.
14 For studies on amide bond destabilization, see: (a) R.
Szostak, S. Shi, G. Meng, R. Lalancette and M. Szostak, J. Org.
6 | J. Name., 2018, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins