´
3680
M. Litvic et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3676–3681
O
Mo O
O
References and notes
V
Et
H
O
Mo O
O
S
VI
MeO2C
CO2Me
Me
H
+
S
1. (a) Schwarz, G.; Mendel, R. R.; Ribbe, M. W. Nature 2009, 460, 839; (b) Kisker,
C.; Schindelin, H.; Rees, D. C. Annu. Rev. Biochem. 1997, 66, 233; (c) Mendel, R. R.
Planta 1997, 203, 399; (d) Hille, R. Essays Biochem. 1999, 34, 125; (e) Mendel, R.
R. J. Exp. Bot. 2007, 58, 2289; (f) Mendel, R. R.; Hänsch, R. J. Exp. Bot. 2002, 53,
1689; (g) Campbell, W. H. Plant Physiol. 1996, 111, 355.
2. (a) Hille, R. Chem. Rev. 1996, 96, 2757; (b) Mendel, R. R.; Smith, A. G.; Marquet,
A.; Warren, M. J. Nat. Prod. Rep. 2007, 24, 963; (c) Johnson, J. L.; Hainline, B. E.;
Rajagopalan, K. V.; Arison, B. H. J. Biol. Chem. 1984, 259, 5414.
3. Bortels, H. Arch. Mikrobiol. 1930, 1, 333.
4. De Renzo, E. C.; Kaleita, E.; Heytler, P. G.; Oleson, J. J.; Hutchins, B. L.; Williams,
J. H. Arch. Biochem. Biophys. 1953, 45, 247.
5. Stiefel, E. I. J. Chem. Soc., Dalton Trans. 1 1997, 3915.
6. (a) Johnson, J. L.; Hainline, B. E.; Rajagopalan, K. V. J. Biol. Chem. 1984, 259, 5414;
(b) Young, C. G.; Wedd, A. G. Chem. Commun. 1997, 1251; (c) Gutteridge, S.;
Tanner, S. J.; Bray, R. C. Biochem. J. 1978, 175, 869.
S
1c
SET
H
S
.
+
Me
N
H
XO
XO-Mo(V)
9
alkyl radical
transfer
O
H
OEt
IV
O
OEt
Mo O
S
MeO2C
CO2Me
Me
IV
-2a
Mo OH
S
H
S
S
2
Me
N
H
7. (a) Coughlan, M. P. J. Inherit. Metab. 1983, 6, 70; (b) Kitamura, S.; Sugihara, K.;
Ohta, S. Drug Metab. Pharmacokinet. 2006, 21, 83.
XO-alkylated
XO-alkylated
10
8. (a) Appignani, B. A.; Kaye, E. M.; Wolpert, S. M. AJNR 1996, 17, 317; (b) Roth, A.;
Nogus, C.; Monnet, J. P.; Ogier, H.; Sandubray, J. M. Virchows Arch. [A] 1985, 405,
379; (c) Schwarz, G.; Santamaria-Araujo, J. A.; Wolf, S.; Lee, H.-J.; Adham, I. M.;
Gröne, H.-J.; Schwegler, H.; Sass, J. O.; Otte, T.; Hänzelmann, P.; Mendel, R. R.;
Engel, W.; Reiss, J. Hum. Mol. Gen. 2004, 13, 1249.
Scheme 5. The plausible mechanism for the action of XO in the metabolism of 4-
ethyl-1,4-DHP 1c.
9. (a) Klecker, R. W.; Cysyk, R. L.; Collins, J. M. Bioorg. Med. Chem. 2006, 14, 62; (b)
Gu, C.; Collins, R.; Holsworth, D. D.; Walker, G. S.; Voorman, R. L. Drug Metab.
Dispos. 2006, 34, 2044; (c) Torres, R. A.; Korzekwa, K. R.; McMasters, D. R.;
Fandozzi, C. M.; Jones, J. P. J. Med. Chem. 2007, 50, 4642; (d) Kawashima, K.;
Hosoi, K.; Naruke, T.; Shiba, T.; Kitamura, M.; Watabe, T. Drug Metab. Dispos.
1999, 27, 422.
10. (a) Parkinson, A. Biotransformation of Xenobiotics, in Casarett and Doull’s
Toxicology: The Basic Science of Poison, 6th ed.; McGraw-Hill: New York, 2001.
p 133; (b) Ashikawa, Y.; Fujimoto, Z.; Noguchi, H.; Habe, H.; Omori, T.; Yamane,
H.; Nojiri, H. Structure 2006, 14, 1779.
11. (a) Schepetkin, I. A.; Cherdyntseva, N. V.; Kagiya, V. T. Patophysiology 2001, 8,
119; (b) Terao, M.; Kurosaki, M.; Barzago, M. M.; Varasano, E.; Boldetti, A.;
Bastone, A.; Fratelli, M.; Garattini, E. J. Biol. Chem. 2006, 281, 19748; (c) Itoh, K.;
Masubuchi, A.; Sasaki, T.; Adachi, M.; Watanabe, N.; Nagata, K.; Yamazoe, Y.;
Hiratsuka, M.; Mizugaki, M.; Tanaka, Y. Drug Metab. Dispos. 2007, 35, 734.
12. (a) Atkins, W. M.; Sligar, S. G. J. Biol. Chem. 1988, 263, 18842; (b) Stevenson, J.-
A.; Westlake, A. C. G.; Whittock, C.; Wong, L.-L. J. Am. Chem. Soc. 1996, 118,
12846.
The first step of the mechanism is similar to aromatization of 1g
and includes SET from 1c to Moco to form radical cation 9 and par-
tially reduced XO-Mo(V), whereas rearrangement of radical cation
9 is different and includes the elimination of the ethyl radical to
produce a dealkylated product in the protonated form 10 and
alkylated enzyme (XO-alkylated). In the last step, deprotonation
of 10 by the enzyme releases product 2a and an ethylated enzyme
in a fully reduced form. The mechanisms presented in Schemes 4
and 5 are in accordance with the general behavior of molybde-
num-containing enzymes and includes the formation of Mo(V)
species that are well described and proved as intermediates in a
mechanistic cycle of this type of enzyme.43
We believe that results obtained with molybdenum salts are
good chemical models for the possible chemical behavior of molyb-
denum-containing enzymes. Results obtained employing tungsten
hexachloride (WCl6), albeit in more vigorous conditions, also
showed great selectivity on the model 1,4-DHP (Table 1, entry
11). Although much less abundant in nature, this might explain
why tungsten (VI) and not molybdenum is predominantly present
in enzymes isolated from hyperthermophilic archaea.44 Due to their
higher chemical reactivity and under these conditions, the moybde-
num-containing enzymes (VI) would probably not be selective
enough to perform the same reactions as enzymes involved in the
metabolism of organsims living in such a harsh environment. This
prediction is based on results obtained by MoOCl4 and MoCl5
(Table 1, entries 3 and 7) that resulted in very poor chemical selec-
tivity, which is in sharp contrast to tungsten(VI) chloride during
which a clean reaction was observed (reflux of acetic acid).
Further research is in progress in order to clarify the role of pure
isolated molybdenum-containing enzymes employed in the aro-
matization of 1,4-DHPs in vitro as well as their real action in living
organisms.
13. Rettie, A. E.; Fisher, M. B. In Handbook of Drug Metabolism; Wolf, T. F., Ed.;
Marcel Dekker: New York, 1999; p 131.
14. (a) Grün, G.; Fleckenstein, A. Arzneimittelforschung (Drug Res.) 1972, 22, 334; (b)
Bossert, F.; Meyer, H.; Wehinger, E. Angew. Chem. 1981, 93, 755; (c) Janis, R. A.;
Triggle, D. J. J. Med. Chem. 1983, 26, 775.
15. Berkels, B.; Roesen, R.; Dhein, S.; Fricke, U.; Klaus, W. Cardiovasc. Drug Rev.
1999, 17, 179.
16. Tsuruo, T.; Iida, H.; Nojiri, M.; Tsukagoshi, S.; Sakurai, Y. Cancer Res. 1983, 43,
2905.
17. Chapman, R. W.; Danko, G.; Siegels, M. I. Pharmacology 1984, 29, 282.
18. Malaise, W. J.; Mathias, P. C. F. Diabetologia 1985, 28, 153.
19. Krauze, A.; Germane, S.; Eberlins, O.; Sturms, I.; Klusa, V.; Duburs, G. Eur. J. Med.
Chem. 1999, 34, 301.
20. Peri, R.; Padmanabhan, S.; Singh, S.; Rutledge, A.; Triggle, D. J. J. Med. Chem.
2000, 43, 2906.
21. Zhou, X.; Zhang, L.; Tseng, E.; Scott-Ramsay, E.; Schentag, J. J.; Coburn, R. A.;
Morris, M. E. Drug Metab. Dispos. 2005, 33, 321.
22. (a) Böcker, R. H.; Guengerich, F. P. J. Med. Chem. 1986, 28, 1596; (b) Kudo, S.;
Okumura, H.; Miyamoto, G.; Ishizaki, T. Drug Metab. Dispos. 1999, 27, 303.
23. Memarian, H. R.; Abdoli-Senejani, M.; Tangestaninejad, S. J. Iran Chem. Soc.
2006, 3, 285.
24. (a) Vanden Eynde, J. J.; D’Ozario, R.; Van Haverbeke, Y. Tetrahedron 1994, 50,
2479; (b) Karami, B.; Montazerozohori, M.; Habibi, M. H.; Zolfigol, M. A.
Heterocycl. Commun. 2006, 11, 513; (c) Vanden Eynde, J. J.; Delfosse, F.;
Mayence, A.; Van Haverbeke, Y. Tetrahedron 1995, 51, 6511; (d) Bagley, M. C.;
Lubinu, M. C. Synthesis 2006, 1283; (e) Litvic´, M.; Cepanec, I.; Filipan, M.; Kos,
In summary, this paper describes a remarkably fast and selec-
tive method for the aromatization of substituted Hantzsch-1,4-
DHPs employing MoOCl4 as an oxidant under reflux in acetonitrile
as a solvent. The products, substituted pyridines, were isolated in
high purity and excellent yield. The 1,4-DHPs bearing alkyl groups
afforded unusual product distribution as a result of the dealkyla-
tion process. According to the obtained results, it is proposed that
molybdenum-containing enzymes participate in the metabolism of
1,4-DHP drugs to some degree.
ˇ ´
´
´
K.; Bartolincic, A.; Druškovic, V.; Tibi, M. M.; Vinkovic, V. Heterocycles 2005, 65,
´
´
´
23; (f) Filipan-Litvic, M.; Litvic, M.; Cepanec, I.; Vinkovic, V. ARKIVOC 2008, xi,
96; (g) Filipan-Litvic´, M.; Litvic´, M.; Vinkovic´, V. Tetrahedron 2008, 64, 10912.
25. (a) Zolfigol, M. A.; Kiany-Borazjani, M.; Sadeghi, M. M.; Memarian, H. R.;
Mohammadpoor-Baltork, I. Synth. Commun. 2000, 30, 2945; (b) Zolfigol, M. A.;
Kiany-Borazjani, M.; Sadeghi, M. M.; Mohammadpoor-Baltork, I.; Memarian, H.
R. Synth. Commun. 2000, 30, 3919; (c) Zolfigol, M. A.; Kiany-Borazjani, M.;
Sadeghi, M. M.; Mohammadpoor-Baltork, I.; Memarian, H. R. Synth. Commun.
2000, 30, 551; (d) Varma, R. S.; Kumar, D. J. Chem. Soc., Perkin Trans. 1 1999,
1755; (e) Chavan, S. P.; Dantale, S. W.; Kalkote, U. R.; Jyothirmai, V. S.; Kharul,
R. K. Synth. Commun. 1998, 28, 2789; (f) Chai, L.; Zhao, Y.; Sheng, Q.; Liu, Z.-Q.
Tetrahedron Lett. 2006, 9283; (g) Panchgalle, S. P.; Choudhary, S. M.; Chavan, S.
P.; Kalkote, U. R. J. Chem. Res. (S) 2004, 550.
Acknowledgment
26. (a) Mashraqui, S. H.; Karnik, M. A. Tetrahedron Lett. 1998, 39, 4896; (b) Kamal,
A.; Ahmad, M.; Mohd, N.; Hamid, A. M. Bull. Chem. Soc. Jpn. 1964, 37, 610; (c)
Nakamichi, N.; Kawashita, Y.; Hayashi, M. Org. Lett. 2002, 4, 3955; (d) Misner, R.
E. Diss. Abstr. 1969, 29B, 2817; (e) Filipan-Litvic´, M.; Litvic´, M.; Vinkovic´, V.
The authors wish to express their gratitude to Belupo Pharma-
ceuticals, Inc. for financial support of this research.