10.1002/chem.202005282
Chemistry - A European Journal
COMMUNICATION
[7]
a) L. J. Gooßen, G. Deng, L. M. Levy, Science 2006, 313, 662-664. b) O.
Baudoin, Angew. Chem. Int. Ed. 2007, 46, 1373-1375. c) G. J. P. Perry,
I. Larrosa, Eur. J. Org. Chem. 2017, 3517-3527.
coming closer together. The C-B-C-angle of 108° in the anion
changes to 87° in 6. This structure has CS symmetry when
rotationally averaging over the atomic positions of the methoxy
group. During the reaction, the B-C bond is cleaved while the C-
C bond is formed. The CS symmetry is maintained while the bond
breaks and lowered only afterwards. The C-B-C-angle in the
transition state is 60° and shrinks further while the tetrahedral
coordination at the carbon atom in the oxidized ring is restored.
[8]
[9]
H. Mizuno, H. Sakurai, T. Amaya, T. Hirao, Chem. Commun. 2006, 5042-
5044.
P. Abley, J. Halpern, J. Chem. Soc. D 1971, 1238-1239.
[10] Z. Lu, R. Lavendomme, O. Burghaus, J. R. Nitschke, Angew. Chem. Int.
Ed. 2019, 58, 9073-9077.
[11] a) D.H. Geske, J. Phys. Chem. 1959, 63, 1062. b) D. H. Geske, J. Phys.
Chem. 1962, 66, 17431744.
[12] S. B. Beil, S. Mꢀhle, P. Enders, S. R. Waldvogel, Chem. Commun. 2018,
54, 6128−6131.
In summary, we have demonstrated the feasibility of
a
chemoselective coupling of tetraorganoborates using organo-
photocatalysis. This conceptual approach has allowed us to
access a wide range of biaryl, heterobiaryl and olefin products
under blue light irradiation, in a simple and practical setup. A
deeper analysis of the mechanism through experimental and
theoretical studies led us to propose an unusual reaction path that
goes through a cyclic intermediate, essential to the formation of
the C-C bond. Heterocoupling reactions were achieved and we
are currently working on alternative borate salts with increased
sustainability and atom economy. There is no doubt that these
advances within the field of photocatalysis will enable the
discovery of new reactions in the near future.
[13] A. Music, A. N. Baumann, P. Spieß, A. Plantefol, T. C. Jagau, D. Didier
J. Am. Chem. Soc. 2020, 142, 4341-4348.
[14] A. N. Baumann, A. Music, J. Dechent, N. Müller, T. C. Jagau, D. Didier,
Chem. Eur. J. 2020, 26, 8382-8387.
[15] C. Gerleve, A. Studer, Angew. Chem. Int. Ed. 2020, 59, 15468-15473.
[16] L. Marzo, S. K. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed. 2018,
57, 10034-10072.
[17] a) N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075-10166.
b) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113,
5322-5363.
[18] D. Kalyani, K. B. McMurtrey, S. R. Neufeldt, M. S. Sanford, J. Am. Chem.
Soc. 2011, 133, 18566-18569.
[19] L. Zeng, T. Liu, C. He, D. Shi, F. Zhang, C. Duan, J. Am. Chem. Soc.
2016, 138, 3958-3961.
[20] a) D. P. Hari, P. Schroll, B. Kꢀnig, J. Am. Chem. Soc. 2012, 134, 2958-
2961. b) I. Ghosh, T. Ghosh, J. I. Bardagi, B. König, Science 2014, 346,
725-728. c) A. U. Meyer, T. Slanina, C.-J. Yao, B. Kꢀnig, ACS Catal.
2016, 6, 369-375.
Acknowledgements
D.D., A.M and A.N.B. are grateful to the Fonds der Chemischen
Industrie, the Deutsche Forschungsgemeinschaft (DFG grant: DI
2227/2-1), the SFB749 and the Ludwig-Maximilians University for
PhD funding and financial support. F.M. is grateful to the
European Union for co-funding by the Erasmus+ program. T.C.J.
gratefully acknowledges funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation program (Grant Agreement No. 851766).
Prof. Christof Sparr and his group are kindly acknowledged for
supplying some of the acridinium photocatalysts used in this
project. We thank Dr. Marcel Leroux for helping designing the
photochemical reactor.
[21] J. C. Doty, P. J. Grisdale, T. R. Evans, J. L. R. Williams, J. Organomet.
Chem. 1971, 32, C35-C37.
[22] B. Zilate, C. Fischer, C. Sparr Chem. Commun. 2020, 56, 1767-1775.
[23] See supporting information.
[24] R. Rossi, F. Bellina, M. Lessi, Adv. Synth. Catal. 2012, 354, 1181-1255.
[25] a) B. Zomer, L. Collé; A. Jedyńska, G. Pasterkamp, I. Kooter, H. Bloemen,
Anal. Bioanal. Chem. 2011, 401, 2945-2954. b) K. Ohkubo, K. Mizushima,
R. Iwata, K. Souma, N. Suzuki, S. Fukuzumi, Chem. Commun. 2010, 46,
601-603. c) K. Ohkubo, K. Suga, S. Fukuzumi, Chem. Commun. 2006,
2018-2020.
[26] Y. Shao et al.: Advances in molecular quantum chemistry contained in
the Q-Chem 4 program package, Mol. Phys. 2015, 113, 184-215.
[27] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648. b) P. J. Stephens, F. J.
Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623-
11627.
Keywords: cross-coupling • organoborates • photocatalysis •
oxidation • hetero-coupling
[1]
[2]
a) J. Wencel-Delord, A. Panossian, F. R. Leroux, F. Colobert, Chem. Soc.
Rev. 2015, 44, 3418-3430. b) J. Hassan, M. Sévignon, C. Gozzi, E.
Schulz, M. Lemaire, Chem. Rev. 2002, 102, 1359-1470.
a) R. J. P. Corriu, J. P. Masse, J. Chem. Soc., Chem. Commun. 1972,
144. b) K. Tamao, K. Sumitani, M. Kumada, J. Am. Chem. Soc. 1972, 94,
4374-4376.
[3]
[4]
E.-i. Negishi Acc. Chem. Res. 1982, 15, 340-348.
a) N. Miyaura, A. Suzuki, J. C. S. Chem. Comm. 1979, 866-867. b) N.
Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 36, 3437-3440.
D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636-3638.
a) D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174-238.
b) G. P. McGlacken, L. M. Bateman, Chem. Soc. Rev. 2009, 38, 2447-
2464. c) L. Ackermann, R. Vincente, A. R. Kapdi, Angew. Chem. Int. Ed.
2009, 48, 9792-9826. d) N. Kuhl, M. N. Hopkinson, J. Wencel-Delord, F.
Glorius, Angew. Chem. Int. Ed. 2012, 51, 10236-10254. e) R. Stuart, K.
Fagnou, Science 2007, 316, 1172-1175. f) Y. Yang, J. Lan, J. You, Chem.
Rev. 2017, 117, 8787-8863. g) Y.-F. Zhang, Z.-J. Shi, Acc. Chem. Res.
2019, 52, 161-169. h) J. L. Röckl, D. Pollok, R. Franke, S. R. Waldvogel,
Acc. Chem. Res. 2020, 53, 45-61.
[5]
[6]
5
This article is protected by copyright. All rights reserved.