Theranostics 2017, Vol. 7, Issue 10
2671
2
2
2
1. Wang T, Zhu DW, Liu G, Tao W, Cao W, Zhang LH, et al. DTX-loaded
star-shaped TAPP-PLA-b-TPGS nanoparticles for cancer chemical and
photodynamic combination therapy. RSC Adv. 2015; 5: 50617-27.
2. Zhang XD, Dong YC, Zeng XW, Liang X, Li XM, Tao W, et al. The effect of
autophagy inhibitors on drug delivery using biodegradable polymer
nanoparticles in cancer treatment. Biomaterials. 2014; 35: 1932-43.
3. Tao W, Zeng XW, Liu T, Wang ZY, Xiong QQ, Ouyang CP, et al.
Docetaxel-loaded nanoparticles based on star-shaped mannitol-core
PLGA-TPGS diblock copolymer for breast cancer therapy. Acta Biomater. 2013;
9: 8910-20.
Acknowledgements
This work was financially supported by the
National Natural Science Foundation of China
(
31525009 and 31222023), the National Key Research
and Development Program of China
2017YFC1103502), Sichuan Innovative Research
(
2
2
2
4. Dunwan Z, Wei T, Hongling Z, Gan L, Teng W, Linhua Z, et al. Docetaxel
Team Program for Young Scientists (2016TD0004),
and Distinguished Young Scholars of Sichuan
University (2011SCU04B18).
(
DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted
drug delivery system for the treatment of liver cancer. Acta Biomater. 2016; 30:
44-54.
1
5. Zhang XD, Yang Y, Liang X, Zeng XW, Liu ZG, Tao W, et al. Enhancing
therapeutic effects of docetaxel-loaded dendritic copolymer nanoparticles by
co-Treatment with autophagy inhibitor on breast cancer. Theranostics. 2014; 4:
085-95.
6. Wang ZY, Wu YP, Zeng XW, Ma YP, Liu J, Tang XL, et al. Antitumor efficiency
of D-alpha -tocopheryl polyethylene glycol 1000
succinate-b-poly(epsilon-caprolactone-ran-lactide) nanoparticle-based
delivery of docetaxel in mice bearing cervical cancer. J Biomed Nanotechnol.
014; 10: 1509-19.
Supplementary Material
Supplementary figures and tables.
1
2
Competing Interests
The authors have declared that no competing
interest exists.
2
7. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design,
functionalization strategies and biomedical applications of targeted
biodegradable/biocompatible polymer-based nanocarriers for drug delivery.
Chem Soc Rev. 2013; 42: 1147-235
2
2
3
3
3
8. Yang T, Choi M-K, Cui F-D, Kim JS, Chung S-J, Shim C-K, et al. Preparation
and evaluation of paclitaxel-loaded PEGylated immunoliposome. J Control
Release. 2007; 120: 169-77.
9. Choi CHJ, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in
solid tumors with transferrin-containing gold nanoparticles. P Natl Acad Sci.
References
1
.
Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA)
controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev.
2010; 107: 1235-40.
2016; 107: 163-75.
0. Cho H-J, Yoon HY, Koo H, Ko S-H, Shim J-S, Lee J-H, et al. Self-assembled
2
.
Zhou WS, Li CB, Wang ZY, Zhang WL, Liu JP. Factors affecting the stability of
drug-loaded polymeric micelles and strategies for improvement. J Nanopart
Res. 2016; 18: 1-18
®
for
nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic
tumor-targeted delivery of docetaxel. Biomaterials. 2011; 32: 7181-90.
1. Kumar P, Wu HQ, McBride JL, Jung KE, Kim MH, Davidson BL, et al.
Transvascular delivery of small interfering RNA to the central nervous
system. Nature. 2007; 448: 39-43.
3
.
.
Gothwal A, Khan I, Gupta U. Polymeric Micelles: Recent advancements in the
aelivery of anticancer drugs. Pharm Res. 2016; 33: 18-39
Gong C, Deng S, Wu Q, Xiang M, Wei X, Li L, et al. Improving
antiangiogenesis and anti-tumor activity of curcumin by biodegradable
polymeric micelles. Biomaterials. 2013; 34: 1413-32.
4
2. Huimin X, Xiaoling G, Guangzhi G, Zhongyang L, Ni Z, Quanyin H, et al. Low
molecular weight protamine-functionalized nanoparticles for drug delivery to
the brain after intranasal administration. Biomaterials. 2011; 32: 9888-98
3. Li Y, Zhang H, Zhai G-X. Intelligent polymeric micelles: development and
application as drug delivery for docetaxel. J Drug Target. 2017; 25: 285-95.
4. Arranja AG, Pathak V, Lammers T, Shi Y. Tumor-targeted nanomedicines for
cancer theranostics. Pharmacological Res. 2016; 155: 87-95.
5.
6.
7.
Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, et al. Enhanced anti-tumor
efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic
methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011; 32: 8281-90.
Deng C, Jiang YJ, Cheng R, Meng FH, Zhong ZY. Biodegradable polymeric
micelles for targeted and controlled anticancer drug delivery: Promises,
progress and prospects. Nano Today. 2012; 7: 467-80.
3
3
3
5. Kunjachan S, Pola R, Gremse F, Theek B, Ehling J, Moeckel D, et al. Passive
versus Active Tumor Targeting Using RGD- and NGR-Modified Polymeric.
Nanomedicines. Nano Lett. 2014; 14: 972-81.
Valle JW, Armstrong A, Newman C, Alakhov V, Pietrzynski G, Brewer J, et al.
A
phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting
3
6. Bertrand N, Leroux JC. The journey of a drug-carrier in the body: An
anatomo-physiological perspective. J Control Release. 2012; 161: 152-63.
7. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T,
et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J
Pharmacol. 2005; 146: 882-93.
pluronics, in patients with advanced adenocarcinoma of the esophagus and
gastroesophageal junction. Invest New Drugs. 2011; 29: 1029-37.
3
8
.
.
Sanna V, Siddiqui IA, Sechi M, Mukhtar H. Nanoformulation of natural
products for prevention and therapy of prostate cancer. Cancer Lett. 2013; 334:
142-51.
3
3
4
8. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability
9
1
1
Muggia F, Kudlowitz D. Novel taxanes. Anti-cancer drugs. 2014; 25: 593-8.
and the EPR effect in macromolecular therapeutics: a review. J Control Release.
0. Fulton B, Spencer CM. Docetaxel. Drugs. 1996; 51: 1075-92.
1. Engels FK, Mathot RAA, Verweij J. Alternative drug formulations of
2000; 65: 271-84.
9. Shen HX, Shi SJ, Zhang ZR, Gong T, Sun X. Coating Solid Lipid Nanoparticles
with Hyaluronic Acid Enhances Antitumor Activity against Melanoma
Stem-like Cells. Theranostics. 2015; 5: 755-71.
0. Shi SY, Liu YJ, Chen Y, Zhang ZH, Ding YS, Wu ZQ, et al. Versatile
pH-response Micelles with High Cell-Penetrating Helical Diblock Copolymers
for Photoacoustic Imaging Guided Synergistic Chemo-Photothermal Therapy.
Theranostics. 2016; 6: 2170-82.
docetaxel: a review. Anti-Cancer Drugs. 2007; 18: 95-103.
2. Hao Y, Wang L, Zhao Y, Meng D, Li D, Li H, et al. Targeted imaging and
1
1
1
1
1
chemo‐phototherapy of brain cancer by
system. Macromol Biosci. 2015; 15: 1571-85.
a multifunctional drug delivery
3. Jain S, Spandana G, Agrawal AK, Kushwah V, Thanki K. Enhanced antitumor
efficacy and reduced toxicity of docetaxel loaded estradiol functionalized
stealth polymeric nanoparticles. Mol Pharm. 2015; 12: 3871-84.
4. Liang Z, Yang N, Jiang Y, Hou C, Zheng J, Shi J, et al. Targeting docetaxel-PLA
nanoparticles simultaneously inhibit tumor growth and liver metastases of
small cell lung cancer. Int J Pharm. 2015; 494: 337-45.
5. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug
delivery: Design, characterization and biological significance. Adv Drug Deliv
Rev. 2012; 64: 37-48.
4
1. Shen Y, Jin E, Zhang B, Murphy CJ, Sui M, Zhao J, et al. Prodrugs forming high
drug loading multifunctional nanocapsules for intracellular cancer drug
delivery. J Am Chem Soc. 2010; 132: 4259-65.
42. Chu BY, Zhang L, Qu Y, Chen XX, Peng JR, Huang YX, et al. Synthesis,
characterization and drug loading property of Monomethoxy-Poly(ethylene
glycol)-Poly(epsilon-caprolactone)-Poly(D,
copolymers. Sci Rep. 2016; 6: 15.
L-lactide)
(MPEG-PCLA)
6. Nishiyama N, Kataoka K. Current state, achievements, and future prospects of
polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol
Ther. 2006; 112: 630-48.
4
4
4
4
3. Zhang L, Tan LW, Chen LJ, Chen XX, Long CF, Peng JR, et al. A simple method
to improve the stability of docetaxel micelles. Sci Rep. 2016; 6: 10.
4. Wang CY, Mallela J, Mohapatra S. Pharmacokinetics of Polymeric Micelles for
Cancer Treatment. Curr Drug Metab. 2013; 14: 900-9.
5. Walker DA, Kowalczyk B, de la Cruz MO, Grzybowski BA. Electrostatics at
the nanoscale. Nanoscale. 2011; 3: 1316-44.
1
1
1
7. Zhang Z, Tan S, Feng S-S. Vitamin E TPGS as a molecular biomaterial for drug
delivery. Biomaterials. 2012; 33: 4889-906.
8. Zhang Z, Mei L, Feng S-S. Vitamin E D-α-tocopheryl polyethylene glycol 1000
succinate-based nanomedicine. Nanomedicine. 2012; 7: 1645-7.
9. Lee SW, Yun MH, Jeong SW, In CH, Kim JY, Seo MH, et al. Development of
docetaxel-loaded intravenous formulation, Nanoxel-PM (TM) using
polymer-based delivery system. J Control Release. 2011; 155: 262-71.
0. SW L, MH Y, SW J, CH I, JY K, MH S, et al. Development of docetaxel-loaded
intravenous formulation, Nanoxel-PM™ using polymer-based delivery
system. J Control Release. 2011; 155: 262-71.
6. Reisch A, Runser A, Arntz Y, Mely Y, Klymchenko AS. Charge-Controlled
Nanoprecipitation as
Nanocarriers: Making Bright and Stable Nanoparticles. ACS Nano. 2015; 9:
104-16.
7. He ZL, Sun Y, Wang Q, Shen M, Zhu MJ, Li FQ, et al. Degradation and
a
Modular Approach to Ultrasmall Polymer
5
2
4
Bio-Safety
Evaluation
of
mPEG-PLGA-PLL
Copolymer-Prepared
Nanoparticles. J Phys Chem C. 2015; 119: 3348-62.