Communication
ChemComm
2 (a) F. Leroux, P. Jeschke and M. Schlosser, Chem. Rev., 2005,
105, 827; (b) P. Jeschke, ChemBioChem, 2004, 5, 570.
3 on rhodium carbene B leads to the formation of rhodium ylide
C. Obviously, 3 is more sterically hindered, and thus a weaker
nucleophile than the corresponding alcohols, which were used in
our previous studies7c for oxyfluorination with the natural isotope
in 1. Formation of ylide C is affected by the lower nucleophilicity
of trimethyl orthoformate 3 vs. MeOH or other alcohols. Our DFT
modelling studies have shown that rhodium ylides,12 such as C,
readily rearrange to vinyl ethers, such as E. The key step of the
oxyfluorination reaction12a is the electrophilic addition of [18F]1
to vinyl ether E to form intermediate F. As mentioned above, a
possible reason for the unsuccessful oxyfluorination of 2 with
MeOH (Fig. 3) is that the micromolar amounts of [18F]1 reacted
with the large excess of MeOH instead of vinyl ether E. After
rhodium migration and isomerization of the I–F bond to form
intermediate G, C–F bond formation by displacement of the
hypervalent iodine gives H.12a Finally, dissociation of rhodium
gives the final oxyfluorinated product [18F]4.
In summary, we have presented an efficient fluorine-18
labelling method for the one-step synthesis of the biologically
relevant a-[18F]fluoro ether motif.2a The reaction is based on the
downscaling/translation of our rhodium-catalysed oxyfluorination
of diazoketones. The key reagent is [18F]fluoro-benziodoxole,
[18F]1, which is an electrophilic 18F-fluorinating reagent generated
in an operationally simple process from [18F]Bu4NF in the standard
clinical environment. The fluorine-18 oxyfluorination reactions
were performed rapidly typically under mild reaction conditions,
affording fluorine-18 labelled compounds in up to 98% RCY. A
preparative 18F-oxyfluorination experiment gave the a-[18F]fluoro
ether product with a molar activity of 216 GBq mmolÀ1, which is a
higher value compared to typical molar activities reported for
fluorine-18 products obtained using other electrophilic fluor-
inating reagents. We hope that this study contributes to the
application of electrophilic fluorinating reagent [18F]1 extending
the reagent scope of fluorine-18 labelling of PET tracers to
hypervalent iodines.
3 (a) X. Deng, J. Rong, L. Wang, N. Vasdev, L. Zhang, L. Josephson and
S. H. Liang, Angew. Chem., Int. Ed., 2019, 58, 2580; (b) S. Preshlock,
M. Tredwell and V. Gouverneur, Chem. Rev., 2016, 116, 719.
4 (a) J. Charpentier, N. Fru¨h and A. Togni, Chem. Rev., 2015, 115, 650;
(b) T. Liang, C. N. Neumann and T. Ritter, Angew. Chem., Int. Ed.,
2013, 52, 8214.
5 M. G. Campbell, J. Mercier, C. Genicot, V. Gouverneur, J. M. Hooker
and T. Ritter, Nat. Chem., 2017, 9, 1.
6 (a) J. R. Wolstenhulme and V. Gouverneur, Acc. Chem. Res., 2014,
47, 3560; (b) E. Emer, J. Twilton, M. Tredwell, S. Calderwood,
´
T. L. Collier, B. Liegault, M. Taillefer and V. Gouverneur, Org. Lett.,
2014, 16, 6004; (c) S. Verhoog, C. W. Kee, Y. Wang, T. Khotavivattana,
T. C. Wilson, V. Kersemans, S. Smart, M. Tredwell, B. G. Davis and
V. E. Gouverneur, J. Am. Chem. Soc., 2018, 140, 1572; (d) E. E. Gray,
M. K. Nielsen, K. A. Choquette, J. A. Kalow, T. J. A. Graham and
A. G. Doyle, J. Am. Chem. Soc., 2016, 138, 10802; (e) M. K. Nielsen,
C. R. Ugaz, W. Li and A. G. Doyle, J. Am. Chem. Soc., 2015, 137, 9571;
( f ) E. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann, G. B. Boursalian,
T. Furuya, D. C. Choi, J. M. Hooker and T. Ritter, Science, 2011, 334, 639;
(g) M. S. Sanford and P. J. H. Scott, ACS Cent. Sci., 2016, 2, 128;
(h) L. Trump, A. Lemos, B. Lallemand, P. Pasau, J. Mercier, C. Lemaire,
A. Luxen and C. Genicot, Angew. Chem., Int. Ed., 2019, 58, 13149; (i) D. van
der Born, A. Pees, A. J. Poot, R. V. A. Orru, A. D. Windhorst and
D. J. Vugts, Chem. Soc. Rev., 2017, 46, 4709; ( j) A. Pees, C. Sewing,
M. J. W. D. Vosjan, V. Tadino, J. D. M. Herscheid, A. D. Windhorst and
D. J. Vugts, Chem. Commun., 2018, 54, 10179; (k) Z. Yuan, R. Cheng,
P. Chen, G. Liu and S. H. Liang, Angew. Chem., Int. Ed., 2016, 55, 11882.
´
7 (a) N. O. Ilchenko, B. O. A. Tasch and K. J. Szabo, Angew. Chem., Int.
´
Ed., 2014, 53, 12897; (b) W. Yuan and K. J. Szabo, Angew. Chem., Int.
´
Ed., 2015, 54, 8533; (c) W. Yuan, L. Eriksson and K. J. Szabo, Angew.
Chem., Int. Ed., 2016, 55, 8410; (d) M. Luebcke, D. Bezhan and
K. J. Szabo, Chem. Sci., 2019, 10, 5990; (e) A. Bermejo Gomez,
M. Cortes, M. Luebcke, M. Johansson, C. Halldin, K. J. Szabo and
M. Schou, Chem. Commun., 2016, 52, 13963; ( f ) M. A. Cortes Gonzalez,
P. Nordeman, A. Bermejo Gomez, D. N. Meyer, G. Antoni, M. Schou and
´
K. J. Szabo, Chem. Commun., 2018, 54, 4286.
8 (a) S. V. Kohlhepp and T. Gulder, Chem. Soc. Rev., 2016, 45, 6270;
(b) G. C. Geary, E. G. Hope and A. M. Stuart, Angew. Chem., Int. Ed.,
2015, 54, 14911; (c) B. Yang, K. Chansaenpak, H. Wu, L. Zhu,
M. Wang, Z. Li and H. Lu, Chem. Commun., 2017, 53, 3497.
9 (a) J. Bergman and O. Solin, Nucl. Med. Biol., 1997, 24, 677; (b) H. Teare,
E. G. Robins, E. Arstad, S. K. Luthra and V. Gouverneur, Chem. Commun.,
2007, 2330; (c) S. Forsback, O. Eskola, M. Haaparanta, J. Bergmann and
O. Solin, Radiochim. Acta, 2008, 96, 845; (d) H. Teare, E. G. Robins,
A. Kirjavainen, S. Forsback, G. Sandford, O. Solin, S. K. Luthra and
V. Gouverneur, Angew. Chem., Int. Ed., 2010, 49, 6821; (e) I. S. R.
Stenhagen, A. K. Kirjavainen, S. J. Forsback, C. G. Jorgensen, E. G.
Robins, S. K. Luthra, O. Solin and V. Gouverneur, Chem. Commun.,
2013, 49, 1386; ( f ) F. Buckingham, A. K. Kirjavainen, S. Forsback,
A. Krzyczmonik, T. Keller, I. M. Newington, M. Glaser, S. K. Luthra,
O. Solin and V. Gouverneur, Angew. Chem., Int. Ed., 2015, 54, 13366.
10 H. H. Coenen, A. D. Gee, M. Adam, G. Antoni, C. S. Cutler,
Y. Fujibayashi, J. M. Jeong, R. H. Mach, T. L. Mindt, V. W. Pike
and A. D. Windhorst, Nucl. Med. Biol., 2017, 55, v.
We thank the Knut och Alice Wallenbergs Foundation (Dnr:
2018.0066) and Swedish Research Council (VR) for financial
support and Carl Tryggers Foundation (CTS 17:458) for a
postdoctoral fellowship to X. J.
Conflicts of interest
´
11 (a) W. Yuan and K. J. Szabo, ACS Catal., 2016, 6, 6687; (b) M. Lu¨bcke,
There are no conflicts to declare.
´
W. Yuan and K. J. Szabo, Org. Lett., 2017, 19, 4548.
´
12 (a) B. K. Mai, K. J. Szabo and F. Himo, ACS Catal., 2018, 8, 4483;
´
(b) B. K. Mai, K. J. Szabo and F. Himo, Org. Lett., 2018, 20, 6646.
Notes and references
´
`
13 C. Werle, R. Goddard, P. Philipps, C. Fares and A. Fu¨rstner, J. Am.
˜
1 Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Acena, V. A.
Chem. Soc., 2016, 138, 3797.
Soloshonok, K. Izawa and H. Liu, Chem. Rev., 2016, 116, 422.
14 X. Guo and W. Hu, Acc. Chem. Res., 2013, 46, 2427.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 13358--13361 | 13361