ChemCatChem
10.1002/cctc.201801948
CCOMMUNICATION
adduct with cation radical A via direct C–H aryl amination to
generate intermediate B, neutralizing the charge. The
Macromolecules 2012, 45, 607-632; d) Y. Zheng, H. H. Lin, B. Wang
X.C. Wang, Angew. Chem. Int. Ed. 2015, 54, 12868-12884.
subsequent deprotonation of intermediate
B
forms
[3]
a) S. J. Ren, M. J. Bojdys, R. Dawson, A. Laybourn, Y. Z. Khimyak, D.
J. Adams, A. I. Cooper, Adv. Mater. 2012, 24, 2357-2361; b) Z.A. Lan,
Y.X. Fang, Y.F. Zhang, X.C. Wang, Angew. Chem. Int. Ed. 2018, 57,
intermediate C. Subsequent oxidative aromatization of
intermediate C yields the final aminated product 3. Oxygen
plays an important role as terminal oxidant in this two-
470-474.; c) X. Feng, X. S. Ding, D. L. Jiang, Chem. Soc. Rev. 2012,
12
41, 6010-6022; d) R. S. Sprick, B. Bonillo, R. Clowes, P. Guiglion, N. J.
electron and two-proton loss process.
Brownbill, B. J. Slater, F. Blanc, M. A. Zwijnenburg, D. J. Adams, A. I.
Cooper, Angew. Chem. Int. Ed. 2016, 55, 1824-1828; e) H.H Ou, X.R.
Chen, L.H. Lin, Y.X. Fang, X.C. Wang, Angew. Chem. Int. Ed. 2018, 57,
In summary, we have developed a simple metal-free
pathway for the C–H amination of arenes with a SPC system
at ambient conditions. This approach exploits a recyclable
catalyst that is capable of oxidizing arenes through a single
electron transfer (SET) to generate the corresponding cation
radicals under visible light illumination. Oxygen serves as
both the terminal oxidant and the electron mediator, which is
distinct from the previous reports using homogeneous
photoredox systems. N-arylated compounds are obtained in
good to excellent yields with various nitrogen nucleophiles.
Although the semiconductor photoredox catalytic system for
C-H functionalization is currently limited to electron-rich
arenes, further improvement of BCN materials is currently on
the way in our laboratory. The semiconductor system for
organic synthesis expands our knowledge of chemical
reactivity and provides a complementary environmentally
friendly synthetic protocols to C-H functionalization.
8729-8733.; f) L.H. Lin, Z.Y. Yu, X.C. Wang, Angew. Chem. Int. Ed.
2018, DOI: 10.1002/anie.201809897
[
4]
a) Y. Fang, X. Wang, Angew. Chem. Int. Ed. 2017, 56, 15506-15518; b)
M. Zhou, S. B. Wang, P. J. Yang, C. J. Huang, X. C. Wang, Acs Catal.
2018, 8, 4928-4936; c) C. J. Huang, C. Chen, M. W. Zhang, L. H. Lin, X.
X. Ye, S. Lin, M. Antonietti, X. C. Wang, Nat. Commun. 2015, 6, 7698-
7704; d) M. F. Zheng, J. L. Shi, T. Yuan, X. C. Wang, Angew. Chem. Int.
Ed. 2018, 57, 5487-5491; e) L. Y. Chen, X.C. Wang, Chem. Commun.
2017, 53, 11988-11991; f) L.Y. Chen, M. Zhou, Z.S. Luo, M. Wakeel, A.
M. Asiri, .X.C Wang, Appl. Catal. B-Environ. 2019, 241, 246-255.
a) T. Bruckl, R. D. Baxter, Y. Ishihara, P. S. Baran, Acc. Chem. Res.
2012, 45, 826-839; b) T. J. Maimone, P. S. Baran, Nat. Chem. Biol.
2007, 3, 396-407; c) K. Shin, H. Kim, S. Chang, Acc. Chem. Res. 2015,
48, 1040-1052; d) R. Y. Zhu, M. E. Farmer, Y. Q. Chen, J.-Q. Yu,
Angew. Chem. Int. Ed. 2016, 55, 10578-10599; e) J. Q. Yu, K. L. Ding,
Acta. Chim. Sinica. 2015, 73, 1223-1224; f) C. H. Hung, P. Gandeepan,
C. H. Cheng, ChemCatChem 2014, 6, 2692-2697..
[5]
[
6]
a) K. A. Margrey, A. Levens, D. A. Nicewicz, Angew. Chem. Int. Ed.
Acknowledgements
2017, 56, 15644-15648; b) N. A. Romero, D. A. Nicewicz, Chem. Rev.
016, 116, 10075-10166; c) N. A. Romero, K. A. Margrey, N. E. Tay, D.
2
This work was financially supported by the National Key R&D
Program of China (2018YFA0209301), the National Natural
Science Foundation of China (grant nos. 21425309, 21702030,
A. Nicewicz, Science 2015, 349, 1326-1330; d) L. B. Niu, H. Yi, S.
Wang, T. Liu, J. Liu, A. Lei, Nat. Commun. 2017, 8, 14226-14233; e) S.
Das, P. Natarajan, B. König, Chem.-Eur. J. 2017, 23, 18161-18165.
Y. W. Zheng, B. Chen, P. Ye, K. Feng, W. G. Wang, Q. Y. Meng, L. Z.
Wu, C. H. Tung, J. Am. Chem. Soc. 2016, 138, 10080-10083.
[
[
7]
8]
21761132002, and 21861130353), Postdoctoral Science
Foundation (2018M630726), and the 111 Project (D16008). We
thank BayChina for financial support.
a) Y. Zhao, F. Zhao, X. P. Wang, C. Y. Xu, Z. P. Zhang, G. Q. Shi, L. T.
Qu, Angew. Chem. Int. Ed. 2014, 53, 13934-13939; b) K. Ohkubo, K.
Mizushima, R. Iwata, S. Fukuzumi, Chem. Sci. 2011, 2, 715-722.
a) Y. Nosaka, A. Y. Nosaka, Chem. Rev. 2017, 117, 11302-11336; b) D.
C. Fabry, M. Rueping, Acc. Chem. Res. 2016, 49, 1969-1979.
[
[
9]
Conflict of interest
The authors declare no conflict of interest.
10] a) Y. Zheng, Z. H. Yu, H. H. Ou, A. M. Asiri, Y. L. Chen, X. C. Wang,
Adv. Funct. Mater. 2018, 28, 1705407-1705415; b) D. B. Wang, L. X.
Zhao, L. H. Guo, H. Zhang, B. Wan, Y. Yang, Acta .Chim. Sinica. 2015,
73, 388-394.
Keywords: Heterogeneous Catalysis • Visible Light•
Semiconductor Photoredox Catalysis • C-H Fuctionalizaition •
Radical
[
11] S. Kakuda, C. J. Rolle, K. Ohkubo, M. A. Siegler, K. D. Karlin, S.
Fukuzumi, J. Am. Chem. Soc. 2015, 137, 3330-3337; b) J. Messinger,
[
[
1]
2]
a) W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, S. P. Chai, Chem. Rev.
016, 116, 7159-7329; b) C. C. Chen, W. H. Ma, J. C. Zhao, Chem.
2
Soc. Rev. 2010, 39, 4206-4219; c) Y.X. Fang, X.C. Wang, Chem.
Commun. 2018, 54, 5674-5687; d) G.G. Zhang, Z.A. Lan, X.C. Wang,
Angew. Chem. Int. Ed. 2016, 55, 15712-15727; e) e) L.H. Lin, C. Wang,
W. Ren, H.H. Ou, Y.F. Zhang, X.C. Wang, Chem. Sci. 2017, 8, 5506-
[
2
12] Upon the addition of KI and starch to the solution of the N flushed
reactor, the solution did not change colour; but under the standard
reaction conditions with oxygen, the solution were observed in blue
colour. The observations indicate the presence of
photocatalytic process.
2 2
H O in the
5511.
a) A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay, A. Salleo,
Chem. Rev. 2010, 110, 3-24; b) A. Facchetti, Angew. Chem. Int. Ed.
2011, 50, 6001-6003; c) H. X. Zhou, L. Q. Yang, W. You,
This article is protected by copyright. All rights reserved.