SPECIAL TOPIC
Ionic Liquids in the Electrophilic Bromination of Alkenes
2395
Synthesis of Tribromide-Based Ionic Liquids
To an appropriate amount of the starting ionic liquid (bromide or
Recycling Procedure
After product recovery, traces of organic solvents or water were
eliminated from the collected ionic liquids at reduce pressure and
the salt was reused after transformation into the corresponding tri-
chloride) an equimolar amount of Br was added slowly under stir-
2
ring. Attention was paid to avoid an excess of halogen which, at
2
0
least in the case of Br , could be eventually removed under vacuum.
bromide-based ionic liquids.
2
1
-Methylimidazolium Tribromide [mim][Br3]
1
Acknowledgment
H NMR (DMSO-d ): d = 3.87 (s, 3 H, CH ), 7.66 (s, 1 H, CH), 7.68
6
3
(
s, 1 H, CH), 9.04 (s, 1 H, CH).
We thank University of Pisa for the financial support.
1
3
C NMR (DMSO-d ): d = 35.6 (CH ), 119.8 (CH), 123.2 (CH),
6
3
1
35.9 (CH).
References
1
-Ethyl-3-methylimidazolium Tribromide [emim][Br3]
(
1) (a) Brown, R. S. Acc. Chem. Res. 1997, 30, 131.
1
H NMR (DMSO-d ): d = 1.41 (t, J = 7.5 Hz, 3 H, CH ), 3.83 (s, 3
H, CH ), 4.17 (q, J = 7.5 Hz, 2 H, CH ), 7.66 (s, 1 H, CH), 7.75 (s,
6
3
(
(
b) Ruasse, M. F. Adv. Phys. Org. Chem. 1993, 28, 207.
c) Lenoir, D.; Chiappe, C. Chem. Eur. J. 2003, 9, 1037.
3
2
1
H, CH), 9.07 (s, 1 H, CH).
(
2) De La Mare, P. B. Electrophilic Halogenations; Cambridge
1
3
C NMR (DMSO-d ): d = 15.2 (CH ), 35.8 (CH ), 44.3 (CH ),
University Press: Cambridge, 1976, Chap. 5.
6
3
3
2
1
12.0 (CH), 123.6 (CH), 136.3 (CH).
(3) (a) Levin, Y.; Hamza, K.; Abu-Reziq, R.; Blum, J. Eur. J.
Org. Chem. 2006, 1396. (b) Lakouraj, M. M.; Tajbakhsh,
M.; Mokhtary, M. J. Chem. Res. 2005, 481. (c) Koshy, E.
P.; Zacharias, J.; Pillai, V. N. R. React. Funct. Polym. 2006,
66, 845. (d) Salazar, J.; Dorta, R. Synlett 2004, 1318.
(e) Kavala, V.; Naik, S.; Patel, B. K. J. Org. Chem. 2005, 70,
4267. (f) Kaushik, M. P.; Polshettiwar, V. Indian J. Chem.,
Sect. B: Org. Chem. Incl. Med. Chem. 2006, 45, 2542.
1
-Butyl-3-methylimidazolium Tribromide [bmim][Br3]
1
H NMR (DMSO-d ): d = 0.89 (t, J = 7.5 Hz, 3 H, CH ), 1.25 (sext,
J = 7.5 Hz, 2 H, CH ), 1.76 (quint, J = 7.5 Hz, 2 H, CH ), 3.84 (s, 3
6
3
2
2
H, CH ), 4.15 (t, J = 7.5 Hz, 2 H, CH ), 7.67 (s, 1 H, CH), 7.74 (s,
1
3
2
H, CH), 9.08 (s, 1 H, CH).
1
3
C NMR (DMSO-d ): d = 13.4 (CH ), 15.9 (CH ), 31.4 (CH ), 35.9
6
3
2
2
(
g) Djerassi, C.; Scholz, C. R. J. Am. Chem. Soc. 1948, 70,
(
CH ), 48.6 (CH ), 112.4 (CH), 123.7 (CH), 136.5 (CH).
3 2
417. (h) Kessat, A.; Babadjamian, A. Eur. Polym. J. 1996,
3
2, 193.
1
-Octyl-3-methylimidazolium Tribromide [omim][Br3]
1
(4) (a) Kabalka, G. W.; Yang, K.; Reddy, N. K.; Narayana, C.
Synth. Commun. 1998, 28, 925. (b) Dewkar, G. K.; Narina,
S. V.; Sudalai, A. Org. Lett. 2003, 5, 4501. (c) Ye, C.;
Shreeve, J. M. J. Org. Chem. 2004, 69, 8561. (d) Braddock,
D. C.; Cansell, G.; Hermitage, S. A. Synlett 2004, 461.
(e) Kim, K. M.; Park, I. H. Synthesis 2004, 2641. (f) Dieter,
R. K.; Nice, L. E.; Velu, S. E. Tetrahedron Lett. 1996, 37,
H NMR (DMSO-d ): d = 0.84 (t, J = 7.2 Hz, 3 H, CH ), 1.24 (m, 8
H, CH ), 1.76 (m, 2 H, CH ), 3.84 (s, 3 H, CH ), 4.13 (t, J = 7.3 Hz,
2
6
3
2
2
3
H, CH ), 7.67 (s, 1 H, CH), 7.74 (s, 1 H, CH), 9.07 (s, 1 H, CH).
2
1
3
C NMR (DMSO-d ): d = 14.1 (CH ), 22.2 (CH ), 25.7 (CH ), 28.5
6
3
2
2
(
CH ), 28.6 (CH ), 29.6 (CH ), 31.3 (CH ), 35.9 (CH ), 48.9 (CH ),
2 2 2 2 3 2
1
12.4 (CH), 123.7 (CH), 136.5 (CH).
2
377. (g) Tozetti, S. D. F.; de Almeida, L. S.; Esteves, P. M.;
N-Butyl-N-methylpyrrolidinium Tribromide [bmpyr][Br ]
3
de Mattos, M. C. S. J. Braz. Chem. Soc. 2007, 18, 675.
(h) de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S.
Synlett 2006, 1515. (i) McKillop, A.; Sanderson, W. R.
Tetrahedron 1995, 51, 6145. (j) Kavala, V.; Naik, S.; Patel,
B. K. J. Org. Chem. 2005, 70, 4267. (k) Chiappe, C.;
Del Moro, F.; Raugi, M. Eur. J. Org. Chem. 2001, 3501.
1
H NMR (DMSO-d ): d = 0.92 (t, J = 7.2 Hz, 3 H, CH ), 1.31 (m, 2
6
3
H, CH ), 1.67 (m, 2 H, CH ), 2.08 (m, 4 H, 2 CH ), 2.97 (s, 3 H,
2
2
2
CH ), 3.30 (m, 2 H, CH ), 3.45 (m, 4 H, 2 CH ).
3
2
2
1
3
C NMR (DMSO-d ): d = 13.7 (CH ), 19.4 (CH ), 21.2 (CH ), 25.9
6
3
2
2
(
CH ), 47.6 (CH ), 63.1 (CH ), 63.6 (CH ).
2 3 3 2
(
l) Safaiee, M. Synlett 2006, 2513. (m) Stavber, S.; Zupan,
Bromination Procedures and Product Analysis
M. Acta Chim. Slov. 2005, 52, 13. (n) Manral, L. Synlett
2006, 807. (o) He, W. Synlett 2006, 3548. (p) Chiappe, C.;
Leandri, E.; Tebano, M. Green Chem. 2006, 8, 742.
(5) Eissen, M.; Lenoir, D. Chem. Eur. J. 2008, 14, 9830.
(6) Smith, M. B.; March, J. March’s Advanced Organic
Chemistry: Reactions, Mechanism and Structure, 6th ed.;
John Wiley & Sons: Hoboken, 2007.
To a round-bottom flask equipped with a magnetic stirrer and con-
taining the halogenating ionic liquid (3–4 g, ca. 10 mmol) (eventu-
ally warmed to the minimal temperature to obtain a liquid system)
was added the unsaturated compound (1 equiv). The mixture was
stirred at the same temperature until disappearance of the color and
subjected to the most suitable workup procedure.
(
7) (a) Bellucci, G.; Chiappe, C.; Lo Moro, G. J. Org. Chem.
997, 62, 3176. (b) Bianchini, R.; Chiappe, C.; Lo Moro,
G.; Lenoir, D.; Lemmen, P.; Goldberg, N. Chem. Eur. J.
999, 5, 1570.
8) Sergeev, G. B.; Serguchev, Yu. A.; Smirnov, V. V. Russ.
Chem. Rev. (Engl. Transl.) 1973, 42, 697.
Workup A: formation of a liquid product: After cooling to r.t. the
liquid product was separated by decantation and the residue was
washed with a small amount of toluene (1 mL). The collected prod-
uct was analyzed by GC-MS.
1
1
(
Workup B: formation of a solid product: After cooling to r.t., the re-
action product was extracted with Et O (3 × 3 mL). The combined
(9) Ruasse, M. F.; Lo Moro, G.; Galland, B.; Bianchini, R.;
2
extracts were analyzed by GC-MS and by NMR.
Chiappe, C.; Bellucci, G. J. Am. Chem. Soc. 1997, 119,
1
2492 ; and references cited therein.
10) Bellucci, G.; Bianchini, R.; Chiappe, C. J. Org. Chem. 1991,
6, 3068.
Workup C: formation of a solid product: After cooling to r.t., a pro-
(
(
tic solvent (0.5 mL) was added (EtOH or H O) and the insoluble re-
2
5
action product was separated by filtration through a sintered funnel.
The product was analyzed by NMR.
11) (a) Chiappe, C.; Capraro, D.; Conte, V.; Pieraccini, D. Org.
Lett. 2001, 3, 1061. (b) Chiappe, C.; Conte, V.; Pieraccini,
D. Eur. J. Org. Chem. 2002, 2831. (c) Cristiano, R.; Ma, K.;
Pottanat, G.; Weiss, R. G. J. Org. Chem. 2009, 74, 9027.
GC-MS and NMR spectra of compounds 2a–c were identical to
those reported in the literature.
Synthesis 2011, No. 15, 2392–2396 © Thieme Stuttgart · New York