2
342
PUCHKOV, NEPOMNYASHCHIKH
6. P. Ghiaci, J. Norbeck, and C. Larsson, PloS One 9 (7)
calculated using the CBS-QB3 approach [37]. The
calculated energies of dissociation for the α-, β1-, β2-,
and γ-СН bonds of alcohol were 386.7, 429.1, 419.6,
and 426.3 kJ/mol, respectively. The energy of dissoci-
ation of the α-СН bond in 2-butanol (386.7 kJ/mol)
was close to the energy of dissociation of the α-СН
bond in 2-propanol, which is 380.7 kJ/mol [38].
(
2014). doi 10.1371/journal.pone.0102774
7
8
9
. S. Jin, M. Yao, H. Liu, et al., Renew. Sustain. Energy
Rev. 15, 4080 (2011).
. K. W. Boddeker, G. Bengtson, and H. Pingel,
J. Membr. Sci. 54, 1 (1990).
. J. T. Moss, A. M. Berkowitz, M. A. Oehlschlaeger,
et al., J. Phys. Chem. A 112, 10843 (2008).
The values of the energy of bond dissociation, cal-
culated using IDRs, are in good agreement with those
of the dissociation of the CH bonds in 2-butanol, cal-
culated using the CBS-QB3 approach and presented
1
0. Y. Zhang and A. L. Boehman, Combust. Flame 157,
1816 (2010).
in [37], kJ/mol: α-СН bonds, 395.8; β1-СН bonds, 11. J. Zhang, L. Wei, X. Man, et al., Energy Fuel. 26, 3368
(2012).
4
28.8; β2-СН bonds, 421.3; γ-СН bonds, 426. A com-
parison of the energies of dissociation for the α-, β1-,
β2-, and γ-CH bonds in 2-butanol, calculated using
IDRs, and the energies of dissociation for the respec-
tive CH bonds in butane [38] (primary CH bond,
1
2. A. Weissberg, E. Proskauer, J. Riddick, and E. Toops,
Organic Solvents (Intersci., New York, 1955).
1
3. Properties of Organic Substances, The Handbook, Ed. by
A. A. Potekhin (Khimiya, Leningrad, 1984) [in Rus-
sian].
421.3 kJ/mol; secondary СН bond, 411.1 kJ/mol)
showed that the α-СН bond of 2-butanol is much
weaker than the secondary СН bond of butane. Its
reactivity in radical detachments reactions is thus
higher than that of the secondary CH bonds of satu-
rated carbons. The strength of the β1-, β2-, and γ-CH
1
4. E. I. Buneeva, S. V. Puchkov, and E. G. Gumbris, in
Proceedings of the 10th International Conference on
Chemistry–21st Century: New Technologies and New
Products, Kemerovo, 2007, p. 129.
bonds in the alcohol proved to be greater than that of 15. H. Becker, W. Berger, and G. Domschke, Organikum
the corresponding CH bonds in butane, indicating a
drop in the reactivity of these CH bonds. Based on the
results obtained in this work, we may assume the con-
siderable activation of the α-CH bond of 2-butanol
and the deactivation not only of its β1- and β2-СН
bonds, the ones closest to the hydroxyl group, but also
of the more distant γ-CH bonds.
(VEB Deutsch. Verlag Wissensch., Berlin 1990; Mir,
Moscow, 1979).
16. E. A. Simonov, S. A. Savchuk, V. I. Sorokin, et al., Nar-
kologiya, No. 3, 12 (2002).
17. A. W. Jones, L. Nilsson, S. A. Gladh, et al., Clin.
Chem. 37, 1453 (1991).
1
8. V. V. Kharitonov, B. N. Zhitenev, and A. I. Stanilovskii,
Inventor’s Certificate No. 582481 SSSR, Byull. Izobret.
No. 44 (1977).
A similar effect of the hydroxyl group on the reac-
tivity of CH bonds in the reactions with peroxyl radi-
cals was observed in cyclohexanol. It was attributed to
the combined effect of three factors: the electron den-
sity at the hydrogen atom of the attacked CH bond;
the stabilization degree of the transition state; the sta-
bility of the produced carbon-centered radicals
19. L. R. Yakupova, S. G. Proskuryakov, and R. N. Zari-
pov, Butler. Soobshch. 28 (19), 71 (2011).
2
0. E. T. Denisov and G. I. Kovalev, Oxidation and Stabili-
zation of Reactive Fuels (Khimiya, Moscow, 1983) [in
Russian].
[
26, 29].
21. E. T. Denisov, Rate Constants of Homolytic Liquid
Phase Reactions (Nauka, Moscow, 1971) [in Russian].
REFERENCES
2
2. E. G. Moskvitina, S. V. Puchkov, I. M. Borisov, and
A. L. Perkel’, Kinet. Catal. 53, 287 (2012).
1
2
3
. A. M. Danilov, Additives and Additions: Improvement of
23. E. G. Moskvitina, S. V. Puchkov, I. M. Borisov, and
Ecological Characteristics of Petroleum Fuels (Khimiya,
A. L. Perkel’, Russ. J. Phys. Chem. B 7, 262 (2013).
Moscow, 1996) [in Russian].
2
4. E. T. Denisov, N. I. Mitskevich, and V. E. Agabekov,
Mechanism of Liquid Phase Oxidation of Oxygen-Con-
taining Compounds (Nauka Tekhnika, Minsk, 1975) [in
Russian].
. D. V. Tsygankov and A. M. Miroshnikov, Oxygenate
Additives to Motor Gasolines (LAP Lambert, Saar-
brücken, 2013) [in Russian].
. R. F. Khamplullin, X. E. Kharlampidi, T. L. Puchkova,
2
2
2
5. S. V. Puchkov, E. I. Buneeva, and A. L. Perkel’, Kinet.
et al., Vestn. Kazansk. Tekhnol. Univ. 17 (21), 295
Catal. 42, 751 (2001).
(2014).
6. S. V. Puchkov, E. I. Buneeva, and A. L. Perkel’, Kinet.
4
5
. V. M. Biryukov, V. K. Popov, and V. I. Tarasov, Energ.:
Ekon., Tekh., Ekol., No. 12, 28 (2009).
Catal. 43, 756 (2002).
7. N. M. Emanuel’, E. T. Denisov, and Z. K. Maizus,
Chain Reactions of Hydrocarbons Oxidation in Liquid
Phase (Nauka, Moscow, 1965) [in Russian].
. J. Zheng, G. A. Oyedepo, and D. G. Truhlar, J. Phys.
Chem. A 119, 12182 (2015).
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A
Vol. 91
No. 12
2017