Organic Process Research & Development
ARTICLE
Large-Scale Synthesis of Methyl 5-Nitro-2-furoate. Twenty-
three grams of 5-nitro-2-furaldehyde, 66 mL of MeOH, and 5.2 g
of TBAB were dissolved in EtOAc, and the solution was brought
to a final volume of 200 mL. The solution of reagents and ∼12.5%
NaOCl flowed for 75 min at a total flow rate of 2.8 mL/min and a
residence time of 5 min and was stopped once the syringes of
bleach were exhausted. Unlike previous examples, the reaction
was flowed through a 14-mL coil of 0.04” (1 mm) inner diameter
PTFE tubing using a Uniqsis FlowSyn commercial flow unit. As a
preventative measure to protect the valves and pumps of the unit,
the bleach solution was delivered via a syringe pump outfitted
with two 50-mL syringes. A total volume of 105 mL of organic
phase was collected, providing a theoretical yield of 14.7 g of
methyl 5-nitro-2-furoate. Purification was accomplished via
filtration through a plug of silica with EtOAc. A total of 11.0 g
of pure methyl 5-nitro-2-furoate (75% yield) was obtained.
(6) For reviews of the Oppenauer oxidation see: (a) Creyghton, E. J.;
Van der Waal, J. C. In Fine Chemicals Through Heterogenous Catalysis;
Sheldon, R. A., Bekkum, H. v., Eds.; Wiley-VCH: Weinheim; New York,
2
001; (b) Jerome, J. E.; Sergent, R. H. Chem. Ind. 2003, 89, 97.
(c) Graves, C. R.; Campbell, E. J.; Nguyen, S. B. T. Tetrahedron:
Asymmetry 2005, 16, 3460. (d) Fuchter, M. J. Li, J. J., Corey, E. J., Eds.
Name Reactions for Functional Group Transformations; John Wiley &
Sons: Hoboken, 2007. For the Mukaiyama oxidation see: (e) Narasaka,
K.; Morikawa, A.; Saigo, K.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1977,
50, 2773. For reviews of other metal-catalyzed hydride transfer reaction see:
(f) Fujita, K. ꢀi.; Yamaguchi, R. Synlett 2005, 560. (g) B €a ckvall, J. ꢀE.
J. Organomet. Chem. 2002, 652, 105.
(7) (a) Stevens, R. V.; Chapman, K. T.; Weller, H. N. J. Org. Chem.
1
980, 45, 2030. (b) Stevens, R. V.; Chapman, K. T.; Stubbs, C. A.; Tam,
W. W.; Albizati, K. F. Tetrahedron Lett. 1982, 23, 4647.
8) (a) McDonald, C. E.; Nice, L. E.; Shaw, A. W.; Nestor, N. B.
(
Tetrahedron Lett. 1993, 34, 2741. (b) Nwaukwa, S. O.; Keehn, P. M.
Tetrahedron Lett. 1982, 23, 35.
(9) (a) Mirafzal, G. A.; Lozeva, A. M. Tetrahedron Lett. 1998,
’
ASSOCIATED CONTENT
39, 7263. (b) Lee, G. A.; Freedman, H. H. Tetrahedron Lett. 1976,
20, 1641. (c) Meyers, C. Y. J. Org. Chem. 1961, 26, 1046.
S
Supporting Information. (1) General procedures for oxi-
(10) (a) Ehrfield, W., Hessel, V., L €o we, H., Eds. Microreactors; Wiley-
b
VCH: Weinheim, 2000. (b) Hessel, V., Hardt, S., L €o we, H., Eds. Chemical
Micro Process Engineering; Wiley-VCH: Weinheim, 2004. (c) Wirth, T.,
Ed. Microreactors in Organic Synthesis; Wiley-VCH: Weinheim, 2008.
dation reactions; (2) experimental details, analytical data and spectra
for synthesized compounds. This material is available free of charge
via the Internet at http://pubs.acs.org.
(
d) Yoshida, J., Ed. Flash Chemistry: FastOrganic Synthesis in Microsystems;
Wiley-Blackwell: Oxford, 2008; (e) Hessel, V., Renken, A., Schouten,
J. C., Yoshida, J., Eds. Micro Process Engineering; Wiley-Blackwell: Oxford,
’
AUTHOR INFORMATION
2
2
009. (f) J €a hnisch, K.; Hessel, V.; L €o we, H.; Baerns, M. Angew. Chem.
004, 116, 410. Angew. Chem., Int. Ed. 2004, 43, 406. (g) Doku, G. N.;
Corresponding Author
Verboom, W.; Reinhoudt, D. N.; van den Berg, A. Tetrahedron 2005,
1, 2733. (h) Geyer, K.; Cod ꢀe e, D. C.; Seeberger, P. H. Chem.—Eur.
6
J. 2006, 12, 8434. (i) Mason, P. B.; Price, K. E.; Steinbacher, J. L.; Bogdan,
A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300. (j) Watts, P.; Wiles, C.
Org. Biomol. Chem. 2007, 5, 727. (k) Ahmed-Omer, B.; Brandt, J. C.;
Wirth, T. Org. Biomol. Chem. 2007, 5, 733. (l) Wiles, C.; Watts, P. Eur.
J. Org. Chem. 2008, 1655. (m) Fukuyama, T.; Rahman, M. T.; Sato, M.;
Ryu, I. Synlett. 2008, 151. (n) Yoshida, J.; Nagaki, A.; Yamada, T. Chem.—
Eur. J. 2008, 14, 7450. (o) Hartman, R. L.; Jensen, K. F. Lab Chip 2009,
’
ACKNOWLEDGMENT
This work was supported by the Novartis-MIT Center for
Continuous Manufacturing. We thank the members of this team,
particularly Gerhard Penn, Berthold Schenkel, Oljan Repic,
Thierry Schlama, Mike Girgis, Lukas Padeste, and Felix Kollmer
for advice and stimulating discussions. We also thank Professor
Klavs F. Jensen, Professor Stephen L. Buchwald, and their co-workers
for further insightful discussions. A.B.L. thanks the Natural Sciences
and Engineering Research Council of Canada for a Postdoctoral
Fellowship.
9, 2495. (p) Webb, D.; Jamison, T. F. Chem. Sci. 2010, 1, 675.
(11) Palde, P. B.; Jamison, T. F. Angew. Chem. 2011, 123, 3587.
Angew. Chem., Int. Ed. 2011, 50, 3525.
(12) Gutmann, B.; Roduit, J.-P.; Roberge, D.; Kappe, C. O. Angew.
Chem. 2010, 122, 7255. Angew. Chem., Int. Ed. 2010, 49, 7101.
(13) (a) Sedelmeier, J.; Ley, S. V.; Baxendale, I. R.; Baumann, M.
Org. Lett. 2010, 12, 2618. (b) O’Brien, M.; Baxendale, I. R.; Ley, S. V.
Org. Lett. 2010, 12, 1596. (c) Kawaguchi, T.; Miyata, H.; Ataka, K.; Mae,
K.; Yoshida, J.-i. Angew. Chem. 2005, 117, 2465. Angew. Chem., Int. Ed.
2005, 44, 2413. (d) Kobayashi, S.; Miyamura, H.; Akiyama, R.; Ishida, T.
J. Am. Chem. Soc. 2005, 127, 9251. (e) Baxendale, I. R.; Deeley, J.;
Griffiths-Jones, C. M.; Ley, S. V.; Saaby, S.; Tranmer, G. K. Chem.
Commun. 2006, 2566. (f) Zotova, N.; Hellgardt, K.; Kelsall, G. H.;
Jessiman, A. S.; Hii, K. K. Green Chem. 2010, 12, 2157.
’
REFERENCES
(
1) For reviews of Cr(VI) based oxidations see: (a) Patel, S.; Mishra,
B. K. Tetrahedron 2007, 63, 4367. (b) Freeman, F.; Mijs, W. J.; De Jonge,
C. R. H. I. Org. Synth. Oxid. Met. Compd. 1986, 41. (c) Ley, S. V.; Madin,
A. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon Press: Oxford, 1991; Vol. 7, pp 251ꢀ289.
(
2) For a review of TPAP oxidations see: Ley, S. V.; Norman, J.;
Griffith, W. P.; Marsden, S. P. Synthesis 1994, 7, 639.
3) For reviews of hypervalent iodine-based oxidations see: (a) Uyanik,
M.; Ishihara, K. Chem. Commun. 2009, 2086. (b) Zhdankin, V. V. J. Org.
Chem. 2011, 76, 1185. (c) Zhdankin, V. V. Curr. Org. Synth. 2005, 2, 121.
(14) (a) Tanaka, H.; Chou, J.; Mine, M.; Kuroboshi, M. Bull. Chem.
Soc. Jpn. 2004, 77, 1745. (b) Subhani, M. A.; Beigi, M.; Eilbracht, P. Adv.
Synth. Catal. 2008, 350, 2903. (c) Bogdan, A.; McQuade, D. T. Beilstein
J. Org. Chem. 2009, 5, 17.
(
(
d) Tohma, H.; Kita, Y. Adv. Synth. Catal. 2004, 346, 111. (e) Satam, V.;
Harad, A.; Rajule, R.; Pati, H. Tetrahedron 2010, 66, 7659.
4) For recent reviews of TEMPO and nitroxyl radical-catalyzed
oxidations see: (a) Sheldon, R. A.; Arends, I. W. C. E. Adv. Synth. Catal.
004, 346, 1051. (b) Vogler, T.; Studer, A. Synthesis 2008, 1979. For a
review of the use of TEMPO and derivatives in industrial synthesis see:
c) Ciriminna, R.; Pagliaro, M. Org. Process Res. Dev. 2010, 14, 245.
5) For reviews of oxidations mediated by alkoxysulfonium
intermediates see: (a) Mancuso, A. J.; Swern, D. Synthesis 1981, 165.
b) Tidwell, T. T. Synthesis 1990, 857. (c) Tidwell, T. T. Org. React.
990, 39, 297.
(15) Photographs of the actual apparatus utilized and of plug flow in
the tube reactor are contained in the Supporting Information.
(16) The oxidation of hemiacetals to esters has been proposed in
numerous oxidation systems. For specific examples related to halogen-based
oxidations see: (a) McDonald, C. E.; Holcomb, H. L.; Leathers, T. W.;
Kennedy, K. E. Microchem. J. 1992, 47, 115. (b) McDonald, C. E.; Nice,
L. E.; Shaw, A. W.; Nestor, N. B. Tetrahedron Lett. 1993, 34, 2741.
(c) Williams, D. R.; Klingler, F. D.; Allen, E. E.; Lichtenthaler, F. W.
Tetrahedron Lett. 1988, 29, 5087.
(
2
(
(
(
1
(17) (a) Le Paih, J.; Frison, J.-C.; Bolm, C. In Modern Oxidation
Methods; B €a ckvall, J.-E., Ed.; Wiley-VCH: Weinheim, 2004. For select
1
088
dx.doi.org/10.1021/op200118h |Org. Process Res. Dev. 2012, 16, 1082–1089