Page 9 of 10
Journal Name
New Journal of Chemistry
DOI: 10.1039/C5NJ00344J
3
1H NMR (400 MHz, CDCl3): δ 3.83 (s, 3H), 6.99 (d, 2H, J = 8.8
[6] M. Bakherad, S. Jajarmi, J. Mol. Catal. A Chem., 2013, 370, 152; D.
Wang, D. Denux, J. Ruiz, D. Astruc, Adv. Synth. Catal., 2013, 355,
129; M. Bakherad, A. Keivanloo, B. Bahramian, S. Jajarmi, J.
Organomet. Chem., 2013, 724, 206.
[7] C. Uerpmann, B. J. L. Henner, C. Guérin, F. Carre, J. Organomet.
Chem., 2005, 690, 197; T. V. Laine, M. Klinga, M. Leskela, Eur. J.
Inorg. Chem., 1999, 1999, 959; K. T. Sylvester, P. J. Chirik, J. Am.
Chem. Soc., 2009, 131, 8772.
[8] B. L. Small, M. Brookhart, A. M. A. Bennett, J. Am. Chem. Soc.,
1998, 120, 4049; R. Duchateau, Chem. Rev., 2002, 102, 3525.
[9] A. J. Canty, J. Patel, B. W. Skelton, A. H. White, J. Organomet.
Chem., 2000, 607, 194.
[10] M. E. van der Boom, D. Milstein, Chem. Rev., 2003, 103, 1759; W.
Leis, H. A. Mayer, W. C. Kaska, Coord. Chem. Rev., 2008, 252, 1787;
J. Takaya, N. Iwasawa, Organometallics, 2009, 28, 6636; J. I. van der
Vlugt, Angew. Chem. Int. Ed., 2010, 49, 252.
3
3
Hz), 7.31 (t, 1H, J = 7.2 Hz), 7.43 (t, 2H, J = 8.0 Hz), 7.55 (t, 4H,
3J = 8.8 Hz) ppm; 13C NMR (100 MHz, CDCl3), δ 56.5, 115.3,
127.8, 127.9, 129.3, 129.9, 134.9, 142.0, 160.3 ppm.
4-Nitrobiphenyl
1H NMR (400 MHz, CDCl3): δ 7.43ꢀ7.52 (m, 3H), 7.62ꢀ7.64 (m,
2H), 7.73ꢀ7.76 (m, 2H), 8.29ꢀ8.30 (m, 2H) ppm; 13C NMR (100
MHz, CDCl3), δ 125.2, 128.5, 128.9, 130.0, 130.3, 139.9, 148.2,
148.7 ppm.
4-Cyanobiphenyl
1H NMR (400 MHz, CDCl3):δ 7.41ꢀ7.51 (m, 3H), 7.56ꢀ7.60 (m,
2H), 7.68ꢀ7.74 (m, 4H), ppm; 13C NMR (100 MHz, CDCl3), δ 112.0,
120.1, 128.3, 128.8, 129.8, 130.2, 133.7, 140.3, 146.8 ppm.
1,2-Diphenylethyne
1H NMR (400 MHz, CDCl3): δ 7.27 (t, 6H, J = 7.5 Hz), 7.34ꢀ7.43
3
[11] K. Dhara, K. Sarkar, D. Srimani, S. K. Saha, P. Chattopadhyay, A.
Bhaumik, Dalton Trans., 2010, 39, 6395.
(m, 4H) ppm; 13C NMR (100 MHz, CDCl3) δ 89.3, 123.2, 128.2,
128.4, 131.6 ppm.
[12] N. E. Leadbeater, M. Marco, Chem. Rev., 2002, 102, 3217; S.
Minakata, M. Komatsu, Chem. Rev., 2009, 109, 711; M. Kaur, H.
Zhang, Y. Qiang, IEEE Magn. Lett., 2013, 4, 4000204; M. Kaur, A.
Johnson, G. Tian, W. Jiang, L. Rao, A. Paszczynski, Y. Qiang, Nano
Energy, 2013, 2, 124; R. B. Nasir Baig, R. S. Varma, Chem Commun.,
2013, 49, 752; R. Mrówczyński, A. Nan, J. Liebscher, RSC Adv., 2014,
4, 5927.
1-Methoxy-4-phenylethynyl-benzene
3
1H NMR (400 MHz, CDCl3): δ 3.86 (s, 3H), 6.92 (d, 2H, J = 8.8
Hz), 7.35ꢀ7.41 (m, 3H), 7.53 (d, 4H, 3J = 7.2 Hz), 7.56ꢀ7.58 (m, 2H)
ppm; 13C NMR (100 MHz, CDCl3) δ 55.3, 88.1, 89.4, 114.0, 115.4,
123.6, 127.9, 128.3, 131.5, 133.1, 159.6 ppm.
[13] Sh. Wang, Z. Zhang, B. Liu, J. Li, Catal. Sci. Technol., 2013, 3, 2104.
[14] A. P. Philipse, M. P. B. van Bruggen, C. Pathmamanoharan,
Langmuir, 1994, 10, 92; Q. Liu, Z. Xu, J. A. Finch, R. Egerton, Chem.
Mater., 1998, 10, 3936; X. Q. Liu, Z. Y. Ma, J. M. Xing, H. Z. Liu, J.
Magn. Magn. Mater., 2004, 270, 1.
[15] S. Sobhani, S. Rezazadeh, Synlett, 2010, 1485; R. Malakooti, S.
Sobhani, N. Razavi, S. Shafiei, R. Mokhtari, Collect. Czech. Chem.
Commun., 2011, 76, 1979; S. Sobhani, S. Rezazadeh, J. Iran. Chem.
Soc., 2011, 8, 198; S. Sobhani, Z. PakdinꢀParizi, S. Rezazadeh, J.
Organomet. Chem., 2011, 696, 813; S. Sobhani, Z. PakdinꢀParizi, N.
Razavi, Appl. Catal. A: Gen., 2011, 410, 162; S. Sobhani, R.
Jahanshahi, New J. Chem., 2013, 37, 1009; S. Sobhani, Z. Pakdinꢀ
Parizi, R. Naseri, J. Chem. Sci., 2013, 125, 975; S. Sobhani, M. S.
Ghasemzadeh, M. Honarmand, F. Zarifi, RSC Adv., 2014, 4, 44166; S.
Sobhani, Z. Vahidi, Z. Zeraatkar, S. Khodadadi, RSC Adv., 2015, 5,
36552.
1-Methyl-4-phenylethynyl-benzene
1H NMR (250 MHz, CDCl3): δ 2.27 (s, 3H), 7.04ꢀ7.46 (m, 9H).
Heck coupling reaction of iodobenzene and nꢀbutyl acrylate in
large scale
A mixture of iodobenzene (50 mmol), nꢀbutyl acrylate (55 mmol),
Et3N (100 mmol), and PdꢀBIPꢀγꢀFe2O3@SiO2 (0.9 g, 0.5 mol%) was
stirred in DMF at 100 °C. After completion, the reaction mixture
was cooled to room temperature and the catalyst was separated by a
magnetic bar. The solvent was evaporated under vacuum and the
crude product was subjected to silica gel column chromatography
eluted with nꢀhexane/EtOAc (50/1) to afford the pure product in
98% yield.
[16] S. Sobhani, M. Bazrafshan, A. ArabshahiDelluei, Z. PakdinꢀParizi,
Appl. Catal. A: Gen., 2013, 454, 145.
[17] F. Heshmatpour, R. Abazari, S. Balalaie, Tetrahedron, 2012, 68, 3001.
[18] P. Li, L. Wang, L. Zhang, GꢀW. Wang, Adv. Synth. Catal., 2012, 354,
1307.
[19] N. Iranpoor, H. Firouzabadi, A. Riazi, A. Shakerpoor, Appl.
Organometal. Chem., 2013, 27, 451.
[20] B. Tamami, F. Farjadian, S. Ghasemi, H. Allahyari, New J. Chem.,
2013, 37, 2011.
[21] P. Wang, H. Liu, M. Liu, R. Li, J, Ma. New J. Chem., 2014, 38, 1138.
[22] M. A. Zolfigol, T. Azadbakht, V. Khakyzadeh, R. Nejatyami, D. M.
Perrin, RSC Adv., 2014, 4, 40036.
[23] S. B. Waghmode, S. S. Arbuj, B. N. Wani, New J. Chem., 2013, 37,
2911.
[24] F. Zhang, J. Jin, X. Zhong, S. Li, J. Niu, R. Li, J. Ma, Green Chem.,
2011, 13, 1238.
[25] S. Sobhani, Z. Pakdin Parizi, Appl. Catal. A: Gen., 2014, 479, 112.
[26] M. Nasrollahzadeh, A. Azarian, A. Ehsani, M. Khalaj, J. Mol. Catal. A
Chem., 2014, 394, 205.
[27] N. Erathodiyil, S. Ooi, A. M. Seayad, Y. Han, S. S. Lee, J. Y. Ying,
Chem.-Eur. J., 2008, 14, 3118.
[28] A. S. Singh, U. B. Patil, J. M. Nagarkar, Catal. Commun., 2013, 35,
11.
[29] H. Firouzabadi, N. Iranpoor, S. Motevalli, M. Talebi, J Organomet.
Chem., 2012, 118, 708; A. Modak, J. Mondal, A. Bhaumik, Green
Chem., 2012, 14 ,2840.
[30] R. Bernini, S. Cacchi, G. Fabrizi, G. Forte, F, Petrucci, A. Prastaro, S.
Niembro, A. Shafir, A. Vallribera, Green Chem., 2010, 12, 150; P. Li,
L. Wang, L. Zang, GꢀW. Wang, Adv. Synth.Catal., 2012, 354, 1307;
A. Modak, J. Mondal, M. Sasidharan, A. Bhaumik, Green Chem.,
2011, 13, 1317; A. S. Paraskar, A. Sudalai, Tetrahedron, 2006, 62,
Acknowledgement
Financial support of this project by University of Birjand Research
Council is appreciated.
References
aAddress, Department of Chemistry, College of Sciences, University of
Birjand, Birjand, Iran. Fax: +98 56 32202065; Tel: +98 5632202065; E-
[1]
M. Gholinejad, V. Karimkhani, I. Kim, Appl .Organomet. Chem.,
2014, 28, 221; R.J. Lundgren, M. Stradiotto, Chem. Eur. J., 2012, 18,
9758; I. P. Beletskaya, A. V. Cheprakov, Chem. Rev., 2000, 100,
3009; N. J. Whitcombe, K. K. Hii, S. E. Gibson, Tetrahedron, 2001,
57, 7449; A. F. Littke, G. C. Fu, Angew. Chem. Int. Ed., 2002, 41,
4176.
[2] V. Polshettiwar, A. Molnár, Tetrahedron, 2007, 63, 6949; A.
Zamboulis, N. Moitra, J. J .E. Moreau, X. Cattoën, M. Wong Chi Man,
J. Mater. Chem., 2010, 20, 9322.
[3] R. A. Gossage, H. A. Jenkins, P. N. Yadav, Tetrahedron Lett., 2004,
45, 7689.
[4] T. S. Phan, M. Van Der Sluys, C W. Jones, Adv. Synth. Catal., 2006,
348, 609; R. Martin, S. L. Buchwald, Chem. Res., 2008, 41, 1461.
[5] XꢀQ. Zhang, YꢀP. Qiu, B. Rao, MꢀM. Luo, Organometallics, 2009, 28,
3093; B. P. Morgan, G. A. Galdamez, R. J. Gilliard, R. C. Smith,
Dalton Trans., 2009, 2020; YꢀB. Zhou, ZꢀX. Xi, WꢀZ. Chen, DꢀQ.
Wang, Organometallics, 2008, 27, 5911.
This journal is © The Royal Society of Chemistry 2015
J. Name., 2015, 00, 1-7 | 9