Journal of the American Chemical Society
Page 4 of 6
1
zyl were detected by H NMR spectroscopy. The potential
formation of HBr during turnover was identified as a likely
reason for the observed catalyst decomposition via protona-
tion of the pyrrolide arms of the ligand. In agreement with
this hypothesis, addition of pyridine or 2,6-lutidine resulted
in full conversion of benzyl bromide and an increased yield
of the desired bibenzyl product (40%). The presence of ben-
(2) For recent reviews see the Special Issue: Solar Fuels in: Chem.
Soc. Rev. 2013, 2205.
3) (a) Xuan, J.; Xiao, W.-J. Angew. Chemie - Int. Ed. 2012, 51, 6828.
b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013,
13, 5322. (c) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
d) Zeitler, K. Angew. Chemie - Int. Ed. 2009, 48, 9785. (e) Tucker, J.
W.; Stephenson, C. R. J. J. Org. Chem. 2012, 77, 1617.
(4) (a) McCusker, J. K. Acc. Chem. Res. 2003, 36, 876. (b) Yeh, A. T.;
Shank, C. V; McCusker, J. K. Science 2000, 289, 935.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(
(
1
(
Me
zylic C-H bonds in BIH could result in the formation of
unintended by-products. To examine this, we utilized alter-
native quenchers (BIH and BIH) that lack benzylic protons.
(5) Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159.
Cl
(
6) (a) King, K. A.; Spellane, P. J.; Watts, R. J. J. Am. Chem. Soc.
1
985, 107, 1431. (b) Dixon, I. M.; Collin, J.-P.; Sauvage, J.-P.; Flamigni,
L.; Encinas, S.; Barigelletti, F. Chem. Soc. Rev. 2000, 29, 385.
(7) (a) McMillin, D. R.; Buckner, M. T.; Ahn, B. T. Inorg. Chem.
977, 16, 943. (b) Kern, J. M.; Sauvage, J. P. J. Chem. Soc. Chem.
While the number of by-products was decreased, slow con-
version was observed. This can be attributed to the less fa-
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Cl
vorable potentials of BIH and BIH for reduction of
1
Me
21
Zr( PDP) *, which is supported by Stern-Volmer quench-
2
Commun. 1987, 287, 546.
ing experiments showing
a
clear correlation between
(8) Sattler, W.; Ener, M. E.; Blakemore, J. D.; Rachford, A. A.;
Labeaume, P. J.; Thackeray, J. W.; Cameron, J. F.; Winkler, J. R.; Gray,
H. B. J. Am. Chem. Soc. 2013, 135, 10614.
(9) Yang, Q.-Z.; Wu, L.-Z.; Wu, Z.-X.; Zhang, L.-P.; Tung, C.-H.
Inorg. Chem. 2002, 41, 5653.
quenching efficiency and redox potential (Table 1).
Table 1. Stern-Volmer Constants and Redox Poten-
R
tials for BIH Derivatives Used in Photoredox Reac-
tions.
(
10) (a)Yin, H.; Carroll, P. J.; Manor, B. C.; Anna, J. M.; Schelter, E. J.
J. Am. Chem. Soc. 2016, 138, 5984. (b) Yin, H.; Carroll, P. J.; Anna, J.
M.; Schelter, E. J. J. Am. Chem. Soc. 2015, 137, 9234.
Me
Cl
BIH
BIH
BIH
(
11) (a) Kenney, J. W.; Boone, D. R.; Striplin, D. R.; Chen, Y.; Hamar,
+
/0
Eox / V vs. Fc
-0.16
-0.10
0.00
K. B. Organometallics 1993, 12, 3671. (b) Loukova, G. V.; Huhn, W.;
Vasiliev, V. P.; Smirnov, V. A. J. Phys. Chem. A 2007, 111, 4117. (c)
Loukova, G. V.; Smirnov, V. A. Chem. Phys. Lett. 2000, 329, 437. (d)
Loukova, G. V.; Starodubova, S. E.; Smirnov, V. A. J. Phys. Chem. A
2007, 111, 10928. (e) Loukova, G. V. Chem. Phys. Lett. 2002, 353, 244.
(f) Yam, V. W.-W.; Qi, G.-Z.; Cheung, K.-K. Organometallics 1998, 17,
5448. (g) Patrick, E. L.; Ray, C. J.; Meyer, G. D.; Ortiz, T. P.; Marshall,
J. A.; Brozik, J. A.; Summers, M. A.; Kenney, J. W. J. Am. Chem. Soc.
003, 125, 5461. (h) Bruce, M. R. M.; Kenter, A.; Tyler, D. R. J. Am.
Chem. Soc. 1984, 106, 639. (i) Loukova, G. V.; Vasiliev, V. P.; Milov, A.
A.; Smirnov, V. A.; Minkin, V. I. J. Photochem. Photobiol. A Chem.
016, 327, 6. (j) Pfennig, B. W.; Thompson, M. E.; Bocarsly, A. B.
Organometallics 1993, 12, 649.
(12) (a) Heinselman, K. S.; Hopkins, M. D. J. Am. Chem. Soc. 1995,
117, 12340. (b) Choing, S. N.; Francis, A. J.; Clendenning, G.;
Schuurman, M. S.; Sommer, R. D.; Tamblyn, I.; Weare, W. W.; Cuk,
T. J. Phys. Chem. C 2015, 119, 17029. (c) Tonks, I. A.; Durrell, A. C.;
Gray, H. B.; Bercaw, J. E. J. Am. Chem. Soc. 2012, 134, 7301.
(13) (a) Chatterjee, S.; Del Negro, A. S.; Smith, F. N.; Wang, Z.;
Hightower, S. E.; Sullivan, B. P.; Heineman, W. R.; Seliskar, C. J.;
Bryan, S. A. J. Phys. Chem. A 2013, 117, 12749. (b) Adams, J. J.;
Arulsamy, N.; Sullivan, B. P.; Roddick, D. M.; Neuberger, A.;
Schmehl, R. H. Inorg. Chem. 2015, 54, 11136.
-
1
KSV / L mol
47,900 ± 600 3,500 ± 100 no quench-
ing
In conclusion, we have developed a photoluminescent zir-
conium complex supported by 2,6-bis(pyrrolyl)pyridine lig-
ands that acts as an earth-abundant metal substitute for pre-
cious metal photosensitizers in reductive photoredox cataly-
2
sis using visible light. Experimental and computational stud-
Me
ies of Zr( PDP) and its titanium analog suggest that the
2
visible light absorption bands exhibit significant ligand-to-
metal charge-transfer character.
2
ASSOCIATED CONTENT
Supporting Information
Experimental and computational details, spectroscopic and
electrochemical characterization, and crystallographic data
(
CIF). This material is available free of charge via the Internet
at http://pubs.acs.org.
AUTHOR INFORMATION
(
14) Yaroshevsky, a. a. Geochemistry Int. 2006, 44, 48.
(15) Radivojevic, I.; Bazzan, G. J. Phys. Chem. C 2012, 116, 15867.
(16) (a) Searles, K.; Fortier, S.; Khusniyarov, M. M.; Carroll, P. J.;
Sutter, J.; Meyer, K.; Mindiola, D. J.; Caulton, K. G. Angew. Chemie -
Int. Ed. 2014, 53, 14139. (b) Komine, N.; Buell, R. W.; Chen, C.-H.;
Hui, A. K.; Pink, M.; Caulton, K. G. Inorg. Chem. 2014, 53, 1361.
Corresponding Author
Notes
(
17) (a) Nagata, T.; Tanaka, K. Bull. Chem. Soc. Jpn. 2002, 75, 2469.
The authors declare no competing financial interests.
(b) Jones, R. A.; Karatza, M.; Voro, T. N.; Civeir, P. U.; Franck, A.;
Ozturk, O.; Seaman, J. P.; Whitmore, A. P.; Williamson, D. J.
Tetrahedron 1996, 52, 8707.
ACKNOWLEDGMENT
(
18) (a) Brouwer, A. M. Pure Appl. Chem. 2011, 83, 2213. (b) Würth,
C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U. Nat. Protoc.
013, 8, 1535.
19) Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara,
West Virginia University and the Don and Linda Brodie Re-
source Fund for Innovation are acknowledged for financial
support. This work used X-ray crystallography (CHE-1336071)
and NMR (CHE-1228336) equipment funded by the National
Science Foundation.
2
(
T.; Ishida, H.; Shiina, Y.; Oishi, S.; Tobita, S. Phys. Chem. Chem. Phys.
2009, 11, 9850.
(
(
20) Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259.
21) Zhu, X.-Q.; Zhang, M.-T.; Yu, A.; Wang, C.-H.; Cheng, J.-P. J.
REFERENCES
Am. Chem. Soc. 2008, 130, 2501.
(1) (a) Nazeeruddin, M. K.; Baranoff, E.; Grätzel, M. Sol. Energy 2011,
85, 1172. (b) Grätzel, M. J. Photochem. Photobiol. C Photochem. Rev.
(22) Hasegawa, E.; Tateyama, M.; Hoshi, T.; Ohta, T.; Tayama, E.;
Iwamoto, H.; Takizawa, S. Y.; Murata, S. Tetrahedron 2014, 70, 2776.
(23) Yamazaki, Y.; Takeda, H.; Ishitani, O. J. Photochem. Photobiol.
C Photochem. Rev. 2015, 25, 106.
2003, 4, 145. (c) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.;
Pettersson, H. Chem. Rev. 2010, 110, 6595.
ACS Paragon Plus Environment