10.1002/ejoc.201801653
European Journal of Organic Chemistry
FULL PAPER
2.50-3.00 (br, 1H); 13C NMR (CDCl3, 100.6 MHz) δ 155.58, 76.79, 65.92,
Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kühn, Angew. Chem. Int.
Ed. 2011, 50, 8510-8537; e) Z. Sun, H. Tao, Q. Fan, B. Han, Chem
2017, 3, 560–587; f) K. Dong, X.-F. Wu, Angew. Chem., Int. Ed. 2017,
56, 5399-5401; g) A. Banerjee, G. R. Dick, T. Yoshino, M. W. Kanan,
Nature 2016, 531, 215-219; h) J. Schneidewind, R. Adam, W. Baumann,
R. Jackstell, M. Beller, Angew. Chem., Int. Ed. 2017, 56, 1890-1893. i)
X. Liu, X. Li, C. Qiao, H. Fu, L.-N. He, Angew. Chem. Int. Ed. 2017, 56,
7425-7429.
61.75.
1
4-i-Propoxy-1,3-dioxolan-2-one (2f): H NMR (CDCl3, 400 MHz) δ 4.82
(m, 1H), 4.50 (t, J = 8.0 Hz, 1H), 4.38 (dd, J = 8.0 Hz, J= 15.6 Hz, 1H),
3.58-3.70 (m, 3H), 1.16 (d, J = 6.4 Hz, 6H); 13C NMR (CDCl3, 100.6 MHz)
δ 155.18, 75.31, 72.86, 67.11, 66.40, 21.87, 21.76.
[2]
[3]
Selected examples for cyclic carbonate from CO2: a) M. Cokoja, M. E.
Wilhelm, M. H. Anthofer, W. A. Herrmann, F. E. Kuhn, ChemSusChem
2015, 8, 2436-2454; b) L. Longwitz, J. Steinbauer, A. Spannenberg, T.
Werner, ACS Catal. 2018, 8, 665-672; c) J. Steinbauer, T. Werner,
ChemSusChem 2017, 10, 3025-3029; d) H. Büttner, L. Longwitz, J.
Steinbauer, C. Wulf, T. Werner, Top Curr. Chem. 2017, 375, 50; e) X.-B.
Lu, D. J. Darensbourg, Chem. Soc. Rev. 2012, 41, 1462-1484.
Selective catalysts designing for cycloaddition of CO2 and epoxide: a) T.
Ema, Y. Miyazaki, S. Koyama, Y. Yano, T. Sakai, Chem. Commun.
2012, 48, 4489-4491; b) J. Rintjema, R. Epping, G. Fiorani, E. Martín, E.
C. Escudero-Adán, A. W. Kleij, Angew. Chem., Int. Ed. 2016, 55, 3972-
3976; c) C. J. Whiteoak, N. Kielland, V. Laserna, E. C. Escudero-Adán,
E. Martin, A. W. Kleij, J. Am. Chem. Soc. 2013, 135, 1228-1231; d)J.
Langanke, L. Greiner, W. Leitner, Green Chem. 2013, 15, 1173-1182;
e) X.-B. Lu, B. Liang, Y.-J. Zhang, Y.-Z. Tian, Y.-M. Wang, C.-X. Bai, H.
Wang, R. Zhang, J. Am. Chem. Soc. 2004, 126, 3732-3733; f) Z. Wu, H.
Xie, X. Yu, E. Liu, ChemCatChem 2013, 5, 1328-1333; g) Y. Ren, J. J.
Shim, ChemCatChem 2013, 5, 1344-1349; h) M. E. Wilhelm, M. H.
Anthofer, M. Cokoja, I. I. E. Markovits, W. A. Herrmann, F. E. Kuhn,
ChemSusChem 2014, 7, 1357-1360; i) C. J. Whiteoak, A. Nova, F.
Maseras, A. W. Kleij, ChemSusChem 2012, 5, 2032-2038.
4-Chloromethyl-1,3-dioxolan-2-one (2g): 1H NMR (CDCl3, 400 MHz): δ
4.99-5.05 (m, 1H), 4.60 (t, J = 8.4 Hz, 1H), 4.43 (dd, J = 6.0 Hz, 8.4 Hz,
1H), 3.82 (dd, J = 5.2 Hz, 12.0 Hz, 1H), 3.81 (dd, J = 3.2 Hz, 12.0 Hz,
1H); 13C NMR (CDCl3, 100.6 MHz) δ 154.43, 74.43, 66.99, 43.98.
4-((Allyloxy)methyl)-1,3-dioxolan-2-one (2h): 1H NMR (CDCl3, 400
MHz) δ 3.61-3.72 (m, 2H), 4.06-4.07 (m, 2H), 4.39-4.43 (m, 1H), 4.51 (t,
1H), 4.80-4.86 (m, 1H), 5.22-5.32 (m, 2H); 13C NMR (CDCl3, 100.6 MHz)
δ 155.03, 133.76, 118.11, 75.11, 72.74, 68.95, 66.41.
4,4-Dimethyl-1,3-dioxolan-2-one (2i): 1H NMR (CDCl3, 400 MHz): δ
4.17 (s, 2H), 1.53 (s, 6H); 13C NMR (CDCl3, 100.6 MHz) δ 154.65, 81.76,
75.39, 25.98.
Synthesis and characterization of [DBDMA]Br, ZnBr2 and dibenzyl
ether
In a 10 mL Schlenk flask, Zn powder (65.3 mg, 1 mmol), benzyl bromide
(342.1 mg, 2 mmol) and DMF (500 mg) were charged successively at
room temperature. The flask was capped with a stopper and sealed.
Then, the reaction mixture was stirred at 80 oC for 3 h. After the reaction
was completed, the mixture was purified by column chromatography
(silica gel as stationary phase) with ethyl acetate-petroleum ether (1:5) as
the eluent to afford dibenzyl ether (0.22 mmol), and with ethanol as the
eluent to afford [DBDMA]Br and ZnBr2 mixture. After removing ethanol
and adding 1 mL dichloromethane, ZnBr2 (white solid, 0.51 mmol) could
be precipitated out and filtered. And [DBDMA]Br (white solid, 117.0 mg,
0.45 mmol) was obtained by evaporating the dichloromethane solution.
ZnBr2 was characterized by X-ray powder diffraction (Figure S1, JCPDS
#No. 36-0756). The characterization data of dibenzyl ether and
[DBDMA]Br are all in good agreement with literature value.[15,11]
[4]
[5]
[6]
[7]
[8]
[9]
J. Whiteoak, N. Kielland, V. Laserna, E. C. Escudero-Adán, E. Martin
and A. W. Kleij, J. Am. Chem. Soc. 2013, 135, 1228-1231.
T. Ema, Y. Miyazaki, J. Shimonishi, C. Maeda, J. y. Hasegawa, J. Am.
Chem. Soc. 2014, 136, 15270-15279.
Y. Chen, R. Luo, Q. Xu, J. Jiang, X. Zhou, H. Ji, ACS Sustainable
Chem. Eng. 2018, 6, 1074-1082.
L. Wang, L. Lin, G. Zhang, K. Kodama, M. Yasutake, T. Hirose, Chem.
Commun. 2014, 50, 14813-14816.
X. Liu, M.-Y. Wang, S.-Y. Wang, Q. Wang, L.-N. He, ChemSusChem
2017, 10, 1210-1216.
Examples for the application of zinc in CO2 utilization: a) F. Wang, C.
Xu, Z. Li, C. Xia, J. Chen, J. Mol. Catal. A: Chem. 2014, 385, 133-140;
b) C. Maeda, S. Sasaki, T. Ema, ChemCatChem 2017, 9, 946-949; c)
C.-Y. Li, Y.-C. Su, C.-H. Lin, H.-Y. Huang, C.-Y. Tsai, T.-Y. Lee, B.-T.
Ko, Dalton Trans. 2017, 46, 15399-15406; d) M. Reiter, S. Vagin, A.
Kronast, C. Jandl, B. Rieger, Chem. Sci. 2017, 8, 1876-1882; e) Q.
Zhang, H.-Y. Yuan, N. Fukaya, H. Yasuda, J.-C. Choi, ChemSusChem
2017, 10, 1501-1508; f) S. Kattel, P. J. Ramírez, J. G. Chen, J. A.
Rodriguez, P. Liu, Science 2017, 355, 1296-1299; g) D. L. T. Nguyen,
M. S. Jee, D. H. Won, H. Jung, H.-S. Oh, B. K. Min, Y. J. Hwang, ACS
Sustainable Chem. Eng. 2017, 5, 11377-11386; h) W. Li, C. K. Kim, J.
CO₂ Util. 2017, 20, 178-189.
1
Dibenzyl ether: H NMR (400 MHz, CDCl3) δ 7.36 (d, 8H), 7.26-7.31 (m,
2H), 4.70 (s, 4H); 13C NMR (100.6 MHz, CDCl3) δ 140.99, 128.72, 127.82,
127.13, 65.54.[15]
[DBDMA]Br: 1H NMR (400 MHz, CDCl3) δ 7.68 (m, 4H), 7.44 (m, 6H),
5.18 (s, 4H), 3.14 (s, 6H); 13C NMR (100.6 MHz, CDCl3) δ 133.54, 130.93,
129.39, 127.34, 67.88, 48.41. HRMS (ESI): m/z: calcd for C16H20BrN:
305.0779, [M-Br-]+; found 226.1593.[11]
[10] Selected examples for zinc-catalyzed cycloaddition of epoxides and
CO2: a) F. Li, L. Xiao, C. Xia, B. Hu, Tetrahedron Lett. 2004, 45, 8307-
8310; b) H. S. Kim, J. J. Kim, H. Kim, H. G. Jang, J. Catal. 2003, 220,
44-46; c) J. Sun, S.-I. Fujita, F. Zhao, M. Arai, Appl. Catal. A-Gen. 2005,
287, 221-226; d) R. Ma, L.-N. He, Y.-B. Zhou, Green Chem. 2016, 18,
226-231; e) Y. Yang, Y. Hayashi, Y. Fujii, T. Nagano, Y. Kita, T.
Ohshima, J. Okuda, K. Mashima, Catal. Sci. Technol. 2012, 2, 509-
513; f) Y. Chen, R. Luo, Q. Xu, J. Jiang, X. Zhou, H. Ji, ACS
Sustainable Chem. Eng. 2018, 6, 1074−1082; g)
Acknowledgements ((optional))
This work was financially supported by Natural Science
Foundation of Shandong Province (ZR2017BB025, J16LC15),
National Natural Science Foundation of China (21472103,
21672119), the Natural Science Foundation of Tianjin
(16JCZDJC39900), and Youth Science and Technology
Innovation Fund of Shandong Agricultural University (24166).
Martinez, V. Dufaud, ChemCatChem 2018, 10, 843-848; h) S. Biswas,
R. Khatun, M. Sengupta, S. M. Islam, Molecular Catalysis 2018, 452,
129-137; i) C. Yang, M. Liu, J. Zhang, X. Wang, Y. Jiang, J. Sun,
Molecular Catalysis 2018, 450, 39-45; j) R. R. Shaikh, S. Pornpraprom,
V. D’Elia, ACS Catal. 2018, 8, 419-450; k) W. Desens, C. Kohrt, A.
Spannenberg, T. Werner, Org. Chem. Front. 2016, 3, 156-164.
[11] D. Hesek, M. Lee, B. C. Noll, J. F. Fisher, S. Mobashery, J. Org. Chem.
2009, 74, 2567-2570.
Keywords: carbon dioxide fixation • C1 building blocks •
atmospheric pressure • cyclic carbonates• Zinc
[1]
a) Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933;
b) M. He, Y. Sun, B. Han, Angew. Chem. Int. Ed. 2013, 52, 9620-9633;
c) B. Yu, L.-N. He, ChemSusChem 2015, 8, 52-62; d) M. Cokoja, C.
This article is protected by copyright. All rights reserved.