VOL. 50, 2006
ANTIMALARIAL EFFECTS OF ALLICIN
1737
recent experimental data and possible applications for humans. Clin. Micro-
biol. Rev. 14:810–820.
20. McKerrow, J. H. 1999. Cysteine protease inhibitors as chemotherapy for
parasitic infections. Bioorg. Med. Chem. 7:639–644.
21. McKerrow, J. H. 1999. Development of cysteine protease inhibitors as che-
motherapy for parasitic diseases: insights on safety, target validation, and
mechanism of action. Int. J. Parasitol. 29:833–837.
22. McKerrow, J. H., E. Sun, P. J. Rosenthal, and J. Bouvier. 1993. The proteases
and pathogenicity of parasitic protozoa. Annu. Rev. Microbiol. 47:821–853.
23. Mirelman, D., D. Monheit, and S. Varon. 1987. Inhibition of growth of
Entamoeba histolytica by allicin, the active principle of garlic (Allium sati-
vum). J. Infect. Dis. 156:243–244.
In conclusion, we have shown that allicin, a cysteine protease
inhibitor present in freshly crushed garlic cloves, significantly in-
hibits sporozoite infectivity in vivo and decreases parasite loads in
mice with blood-stage infections. These experiments demonstrate
the feasibility of using the same cysteine protease inhibitor to
target two different life cycle stages in the vertebrate host and
support the idea that cysteine protease inhibitors may be useful
drugs for the prophylaxis and treatment of malaria.
24. Miron, T., T. Bercovici, A. Rabinkov, M. Wilchek, and D. Mirelman. 2004.
[3H]allicin: preparation and applications. Anal. Biochem. 331:364–369.
25. Miron, T., I. Shin, G. Feigenblat, L. Weiner, D. Mirelman, M. Wilchek, and
A. Rabinkov. 2002. A spectrophotometric assay for allicin, alliin, and alli-
inase (alliin lyase) with a chromogenic thiol: reaction of 4-mercaptopyridine
with thiosulfinates. Anal. Biochem. 307:76–83.
26. Myung, J. M., P. Marshall, and P. Sinnis. 2004. The Plasmodium circum-
sporozoite protein is involved in mosquito salivary gland invasion by sporo-
zoites. Mol. Biochem. Parasitol. 133:53–59.
27. Naganawa, R., N. Iwata, K. Ishikawa, H. Fukuda, T. Fujino, and A. Suzuki.
1996. Inhibition of microbial growth by ajoene, a sulfur-containing com-
pound derived from garlic. Appl. Environ. Microbiol. 62:4238–4242.
28. Olson, J. E., G. K. Lee, A. Semenov, and P. J. Rosenthal. 1999. Antimalarial
effects in mice of orally administered peptidyl cysteine protease inhibitors.
Bioorg. Med. Chem. 7:633–638.
ACKNOWLEDGMENTS
This work was supported by the National Institutes of Health, RO1
AI056840 (P.S.) and Training Grant 5T32 AI07180 (A.C.), and by
grants from the Drake Family Foundation and by Yeda Co at the
Weizmann Institute of Science (D.M.).
We thank Dabeiba Bernal and Jean Noonan for their expert assis-
tance with mosquito rearing and infection and Daniel Eichinger for his
critical reading of the manuscript.
REFERENCES
1. Ankri, S., and D. Mirelman. 1999. Antimicrobial properties of allicin from
garlic. Microbes Infect. 1:125–129.
2. Ankri, S., T. Miron, A. Rabinkov, M. Wilchek, and D. Mirelman. 1997. Allicin
from garlic strongly inhibits cysteine proteinases and cytopathic effects of Ent-
amoeba histolytica. Antimicrob. Agents Chemother. 41:2286–2288.
3. Blackman, M. J. 2000. Proteases involved in erythrocyte invasion by the
malaria parasite: function and potential as chemotherapeutic targets. Curr.
Drug Targets 1:59–83.
4. Bruna-Romero, O., J. C. R. Hafalla, G. Gonzalez-Aseguinolaza, G. Sano, M.
Tsuji, and F. Zavala. 2001. Detection of malaria liver-stages in mice infected
through the bite of a single Anopheles mosquito using a highly sensitive
real-time PCR. Int. J. Parasitol. 31:1499–1502.
5. Chowdhury, A. K., M. Ahsan, S. N. Islam, and Z. U. Ahed. 1991. Efficacy of
aqueous extract of garlic and allicin in experimental shigellosis in rabbits.
Indian J. Med. Res. 93:33–36.
6. Coppi, A., C. Pinzon-Ortiz, C. Hutter, and P. Sinnis. 2004. The Plasmodium
circumsporozoite protein is proteolytically processed during cell invasion. J.
Exp. Med. 201:27–33.
7. Eilat, S., Y. Oestraicher, A. Rabinkov, D. Ohad, D. Mirelman, A. Battler, M.
Eldar, and Z. Vered. 1995. Alteration of lipid profile in hyperlipidemic rabbits by
allicin, an active constituent of garlic. Coron. Artery Dis. 6:985–990.
8. Franke-Fayard, B., H. Trueman, J. Ramesar, J. Mendoza, M. van der Keur,
R. van der Linden, R. E. Sinden, A. P. Waters, and C. J. Janse. 2004. A
Plasmodium berghei reference line that constitutively expresses GFP at a high
level throughout the complete life cycle. Mol. Biochem. Parasitol. 137:23–33.
9. Freeman, F., and Y. Kodera. 1995. Garlic chemistry: stability of S-(2-prope-
nyl)2-propene-1-sulfinothionate (allicin) in blood, solvents, and simulated
physiological fluids. J. Agric. Food Chem. 43:2332–2338.
10. Grau, G. E., P.-F. Piguet, J. D. Engers, J. A. Louis, P. Vassali, and P.-H.
Lambert. 1986. L3T4ϩ T lymphocytes play a major role in the pathogenesis
of murine cerebral malaria. J. Immunol. 137:2348–2354.
11. Greenwood, B. M., K. Bojang, C. J. Whitty, and G. A. Targett. 2005. Malaria.
Lancet 365:1487–1498.
29. Peters, W. 1975. The chemotherapy of rodent malaria. XXII. The value of
drug-resistant strains of P. berghei in screening for blood schizontocidal
activity. Ann. Trop. Med. Parasitol. 69:155–171.
30. Perez, H. A., M. de la Rosa, and R. Apitz. 1994. In vivo activity of ajoene
against rodent malaria. Antimicrob. Agents Chemother. 38:337–339.
31. Pinzon-Ortiz, C., J. Friedman, J. Esko, and P. Sinnis. 2001. The binding of
the circumsporozoite protein to cell surface heparan sulfate proteoglycans is
required for Plasmodium sporozoite attachment to target cells. J. Biol.
Chem. 276:26784–26791.
32. Rabinkov, A., T. Miron, L. Konstantinovski, M. Wilchek, D. Mirelman, and L.
Weiner. 1998. The mode of action of allicin: trapping of radicals and interaction
with thiol containing proteins. Biochim. Biophys. Acta 1379:233–244.
33. Renia, L., F. Miltgen, Y. Charoenvit, T. Ponnudurai, J. P. Verhave, W. E.
Collins, and D. Mazier. 1988. Malaria sporozoite penetration: a new ap-
proach by double staining. J. Immunol. Methods 112:201–205.
34. Reuter, H. D., H. P. Koch, and L. D. Lawson. 1996. Therapeutic effects and
applications of garlic and its preparations., p. 135–213. In H. P. Koch and
L. D. Lawson (ed.), Garlic: the science and therapeutic application of Allium
sativum L. and related species. Williams and Wilkins, Baltimore, Md.
35. Rosenthal, P. J., G. K. Lee, and R. E. Smith. 1993. Inhibition of a Plasmo-
dium vinckei cysteine proteinase cures murine malaria. J. Clin. Investig.
91:1052–1056.
36. Rosenthal, P. J., P. S. Sijwali, A. Singh, and B. R. Shenai. 2002. Cysteine
proteases of malaria parasites: targets for chemotherapy. Curr. Pharm. Des.
8:1659–1672.
37. Salmon, B. L., A. Oksman, and D. E. Goldberg. 2001. Malaria parasite exit
from the host erythrocyte: a two-step process requiring extraerythrocytic
proteolysis. Proc. Natl. Acad. Sci. USA 98:271–276.
38. Shadkchan, Y., E. Shemesh, D. Mirelman, T. Miron, A. Rabinkov, M.
Wilchek, and N. Osherov. 2004. Efficacy of allicin, the reactive molecule of
garlic, in inhibiting Aspergillus spp. in vitro, and in a murine model of
disseminated aspergillosis. J. Antimicrob. Chemother. 53:832–836.
39. Shenai, B. R., P. S. Sijwali, A. Singh, and P. J. Rosenthal. 2000. Characterization
of native and recombinant falcipain-2, a principal trophozoite cysteine protease
and essential hemoglobinase. J. Biol. Chem. 275:29000–29010.
12. Gupta, K. C., and R. Viswanathan. 1955. Combined action of streptomycin
and chloramphenicol with plant antibiotics against tubercle bacilli. I. Strep-
tomycin and chloramphenicol with cepharanthine. II. Streptomycin and al-
licin. Antibiot. Chemother. 5:24–27.
13. Hahn, G. 1996. History, folk medicine and legendary uses of garlic, p. 1–24.
In H. P. Koch and L. D. Lawson (ed.), Garlic: the science and therapeutic
application of Allium sativum L. and related species. Williams & Wilkins,
Baltimore, Md.
14. Harlow, E., and D. Lane. 1988. Antibodies, a laboratory manual. Cold Spring
Harbor Laboratory, Cold Spring Harbor, N.Y.
15. Harris, L. C., S. L. Cottrel, S. Plummer, et al. 2001. Antimicrobial properties
of Allium sativum (garlic). Appl. Microbiol. Biotechnol. 57:282–286.
16. Jonkers, D., J. Sluimer, and E. Stobberingh. 1999. Letter. Antimicrob.
Agents Chemother. 43:3045.
40. Sijwali, P. S., B. R. Shenai, J. Gut, A. Singh, and P. J. Rosenthal. 2001.
Expression and characterization of the Plasmodium falciparum haemoglo-
binase falcipain-3. Biochem. J. 360:481–489.
41. Stoll, A., and E. Seebeck. 1951. Chemical investigations on alliin, the specific
principle of garlic. Adv. Enzymol. 11:377–400.
42. Sultan, A. A., V. Thathy, U. Frevert, K. J. H. Robson, A. Crisanti, V.
Nussenzweig, R. S. Nussenzweig, and R. Menard. 1997. TRAP is necessary for
gliding motility and infectivity of Plasmodium sporozoites. Cell 90:511–522.
43. Uchida, Y., T. Takahashi, and N. Sate. 1975. The characteristics of the
antibacterial activity of garlic. Jpn. J. Antibiot. 28:638–642.
17. Koch, H. P. 1996. Toxicity, side effects, and the unwanted effects of garlic, p.
221–228. In H. P. Koch and L. D. Lawson (ed.), Garlic: the science and
therapeutic application of Allium sativum L. and related species. Williams &
Wilkins, Baltimore, Md.
44. Voza, T., A. M. Vigario, E. Belnoue, A. C. Gruner, J. C. Deschemin, M.
Kayibanda, F. Delmas, C. J. Janse, B. Franke-Fayard, A. P. Waters, I. Landau,
G. Snounou, and L. Renia. 2005. Species-specific inhibition of cerebral malaria
in mice coinfected with Plasmodium spp. Infect. Immun. 73:4777–4786.
45. Willis, E. 1956. Enzyme inhibition by allicin, the active principle of garlic.
Biochem. J. 63:514–520.
46. Yoshida, N., P. Potocnjak, V. Nussenzweig, and R. S. Nussenzweig. 1981.
Biosynthesis of Pb44, the protective antigen of sporozoites of Plasmodium
berghei. J. Exp. Med. 154:1225–1236.
18. Lawson, L. D. 1996. The composition and chemistry of garlic cloves and
processed garlic, p. 38–39. In H. P. Koch and L. D. Lawson (ed.), Garlic: the
science and therapeutic application of Allium sativum L. and related species.,
2nd ed. Williams & Wilkins, Baltimore, Md.
19. Lou, J., R. Lucas, and G. E. Grau. 2001. Pathogenesis of cerebral malaria: