168
B.F. Machado et al. / Applied Catalysis A: General 425–426 (2012) 161–169
and kind remaining oxygenated surface groups after treatment,
since both catalysts (Pt/CA-LiH973 and Pt/CA-LiS973) presented
Pt catalysts appears to be enhanced by the presence of certain
amount of stable oxygenated groups (such as ether and quinone
groups), on the material surface. Upon oxidation treatment with
HNO3, carbon xerogels and nanotubes [14,30,40] were found to
possess a strong acidic surface, which decreased after a thermal
treatment at 973 K. Similarly to these materials, after an identi-
cal thermal treatment, carbon aerogels also lost part of its acidic
character, although not to the extent of the other reported car-
bon materials, since they conserved a higher amount of surface
groups. This fact could explain the selectivity towards olefinic
bond for the carbon aerogels. Hence, for carbon aerogels, an acidic
surface favors the interaction with the carbonyl group (i.e., car-
bon aerogels oxidized with H2O2 or (NH4)2S2O8) while a less
acidic surface (e.g., after PRT) favors the reduction of the olefinic
bond.
be carried out by designing carbon aerogels with tailored porous
texture and surface chemistry.
Acknowledgements
Financial support for this work was partly provided by LSRE/LCM
Associate Laboratory financing from FCT and FEDER under Pro-
gram COMPETE, project FCOMP-01-0124-FEDER-022706 (Ref.
FCT Pest-C/EQB/LA0020/2011), and from MEC-FEDER (CTM2010-
18889). BFM and SMT gratefully acknowledge Fundac¸ ão para
a Ciência e a Tecnologia the grants SFRH/BPD/70299/2010 and
SFRH/BPD/74239/2010, respectively. AMTS acknowledges the
financial support from POCI/N010/2006.
References
[1] R.W. Pekala, J. Mater. Sci. 24 (1989) 3221–3227.
[2] N. Job, A. Théry, R. Pirard, J. Marien, L. Kocon, J.-N. Rouzaud, F. Béguin, J.-P.
Pirard, Carbon 43 (2005) 2481–2494.
Another possible interpretation could be associated to the polar-
ity of the surface. Toebes et al. [43] related an increased activity and
selectivity towards the olefinic bond, in the non-polar surface of
Pt/CNF catalysts, upon surface group removal. They suggested that
the hydrogenation of the C C bond was assisted by adsorption of
hyde.
[3] S.A. Al-Muhtaseb, J.A. Ritter, Adv. Mater. 15 (2003) 101–114.
[4] J. Wang, X. Yang, D. Wu, R. Fu, M.S. Dresselhaus, G. Dresselhaus, J. Power Sources
185 (2008) 589–594.
[5] C. Moreno-Castilla, F.J. Maldonado-Hodar, Carbon 43 (2005) 455–465.
[6] F.J. Maldonado-Hódar, C. Moreno-Castilla, F. Carrasco-Marín, A.F. Pérez-
Cadenas, J. Hazard. Mater. 148 (2007) 548–552.
[7] S. Morales-Torres, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, F. Carrasco-
Marín, J. Hazard. Mater. 183 (2010) 814–822.
[8] H.T. Gomes, B.F. Machado, A. Ribeiro, I. Moreira, M. Rosário, A.M.T. Silva, J.L.
Figueiredo, J.L. Faria, J. Hazard. Mater. 159 (2008) 420–426.
[9] S. Morales-Torres, F.J. Maldonado-Hodar, A.F. Perez-Cadenas, F. Carrasco-
Marin, Phys. Chem. Chem. Phys. 12 (2010) 10365–10372.
[10] P.V. Samant, F. Goncalves, M.M.A. Freitas, M.F.R. Pereira, J.L. Figueiredo, Carbon
42 (2004) 1321–1325.
To have an overall idea of catalyst performance both textural and
chemical characteristics had to be taken in account simultaneously
(Fig. 6).
[11] A.M.T. Silva, B.F. Machado, J.L. Figueiredo, J.L. Faria, Carbon 47 (2009)
1670–1679.
[12] N. Job, J. Marie, S. Lambert, S. Berthon-Fabry, P. Achard, Energy Convers. Manage.
49 (2008) 2461–2470.
[13] C. Arbizzani, S. Beninati, E. Manferrari, F. Soavi, M. Mastragostino, J. Power
Sources 172 (2007) 578–586.
[14] B.F. Machado, H.T. Gomes, P. Serp, P. Kalck, J.L. Figueiredo, J.L. Faria, Catal. Today
149 (2010) 358–364.
[15] P.V. Samant, M.F.R. Pereira, J.L. Figueiredo, Catal. Today 102–103 (2005)
183–188.
[16] N. Mahata, F. Gonc¸ alves, M.F.R. Pereira, J.L. Figueiredo, Appl. Catal. A 339 (2008)
159–168.
[17] J.C. Serrano-Ruiz, A. López-Cudero, J. Solla-Gullón, A. Sepúlveda-Escribano, A.
Aldaz, F. Rodríguez-Reinoso, J. Catal. 253 (2008) 159–166.
[18] B. Chen, U. Dingerdissen, J.G.E. Krauter, H.G.J. Lansink Rotgerink, K. Möbus, D.J.
Ostgard, P. Panster, T.H. Riermeier, S. Seebald, T. Tacke, H. Trauthwein, Appl.
Catal. A 280 (2005) 17–46.
Comparison of both CA supports (CA-Li and CA-Cs) allow to
estimate the influence of the porous texture, because both oxy-
gen contents (OTPD) and the particle sizes of their corresponding
Pt catalysts are similar. The effect of the surface chemistry on the
activity and selectivity can be discussed by comparing Pt/CA-LiH to
Pt/CA-LiS, both catalysts with similar porous textures and Pt parti-
cle sizes. As referred earlier, it is noteworthy that the activity can be
favored by the increase of the Pt particle size and oxygen content,
while the high SCOL obtained for Pt/CA-LiH seems be related with
some specific oxygen surface groups.
4. Conclusions
[19] H.-U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv. Synth.
Catal. 345 (2003) 103–151.
[20] C. Mohr, P. Claus, Sci. Prog. 84 (2001) 311–334.
Oxidation treatments with H2O2 and (NH4)2S2O8 allow the
porous structure to remain relatively unchanged while introducing
significant amounts of oxygenated groups.
The main acidic character of the fixed oxygenated groups leads
to a strong decrease of the pHPZC of the carbon support, which
strongly influence the Pt dispersion over the carbon aerogels,
decreasing in all cases after oxidation treatments.
When the surface chemistry and Pt particle size are similar,
mesoporous Pt catalysts exhibit a higher activity and selectivity
to the C C bond than macroporous ones in the hydrogenation of
cinnamaldehyde.
[21] E. Ramos-Fernández, J. Ramos-Fernández, M. Martínez-Escandell, A.
Sepúlveda-Escribano, F. Rodríguez-Reinoso, Catal. Lett. 133 (2009) 267–272.
[22] A.J. Plomp, H. Vuori, A.O.I. Krause, K.P. de Jong, J.H. Bitter, Appl. Catal. A 351
(2008) 9–15.
[23] N. Job, M.F.R. Pereira, S. Lambert, A. Cabiac, G. Delahay, J.-F. Colomer, J. Marien,
J.L. Figueiredo, J.-P. Pirard, J. Catal. 240 (2006) 160–171.
[24] C. Moreno-Castilla, M.A. Ferro-García, J.P. Joly, I. Bautista-Toledo, F. Carrasco-
Marín, J. Rivera-Utrilla, Langmuir 11 (1995) 4386–4392.
[25] S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309–319.
[26] B.C. Lippens, J.H. de Boer, J. Catal. 4 (1965) 319–323.
[27] E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373–380.
[28] A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, C. Moreno-Castilla, Carbon 41
(2003) 473–478.
In the case of similar porous texture and Pt particle size, the
increased acidity of the Pt/CA-LiH and Pt/CA-LiS supports leads to a
higher activity and selectivity towards cinnamyl alcohol, especially
in the case of carbon aerogels oxidized with H2O2, which could be
related with a lower content of stronger acid surface groups.
At variance with other carbon supported Pt catalysts, a thermal
[29] M.A. Alvarez-Merino, F. Carrasco-Marin, J.L.G. Fierro, C. Moreno-Castilla, J. Catal.
192 (2000) 363–373.
[30] A. Solhy, B.F. Machado, J. Beausoleil, Y. Kihn, F. Gonc¸ alves, M.F.R. Pereira, J.J.M.
Órfão, J.L. Figueiredo, J.L. Faria, P. Serp, Carbon 46 (2008) 1194–1207.
[31] C. Moreno-Castilla, M.V. López-Ramón, F. Carrasco-Marín, Carbon 38 (2000)
1995–2001.
[32] M.A. Montes-Morán, D. Suárez, J.A. Menéndez, E. Fuente, Carbon 42 (2004)
1219–1225.
[33] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Orfão, Carbon 37 (1999)
1379–1389.
treatment at 973 K favors the activity and hydrogenation of the C
C
bond when using carbon aerogels as supports, due to the kind and
amount of remaining stable oxygenated groups.
Finally, the improvement of catalytic performance and selectiv-
ity towards the desired product using supported Pt catalysts can
[34] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Orfão, Ind. Eng. Chem. Res.
46 (2007) 4110–4115.
[35] M.C. Román-Martínez, D. Cazorla-Amorós, A. Linares-Solano, C.S.-M. De Lecea,
H. Yamashita, M. Anpo, Carbon 33 (1995) 3–13.