a
Table 2 Hydrogenation of various substrates
b
Entry
Substrate
Product
Time/h
Conversion (%)
1
2
3
4
5
6
7
8
9
1-Decene
n-Decane
n-Decane
Cyclododecane
Ethylbenzene
n-Octane
4
4
4
6
8
10
4
4
14
16
12
10
7
100
100
100
100
100
100
100
100
17
1,5,9-Decatriene
Cyclododecene
Styrene
1-Octyne
4-Octyne
3-Phenylpropyne
1-Phenylpropyne
Diphenylacetylene
Benzaldehyde
Cyclohexanone
n-Octane
Propylbenzene
Propylbenzene
1,2-Diphenylethane
Benzylalcohol
—
Hydrocinnamylalcohol
Cyclohexanone
Aniline
10
11
12
13
14
15
100
0
c
c
Cinnamaldehyde
100
100
100
2-Cyclohexenone
Nitrobenzene
2-Bromonitrobenzene
4
16
d
2-Bromoaniline
100
a
Reaction conditions: Substrate 0.25 mmol, substrate/Pt atom = 50 (2 mol%), toluene 0.1 mL, 1 atm H
2
(using toy balloon), room
b
c
d
temperature. Determined by GC and GC–MS. Mixture of partially and fully hydrogenated products. Containing less than 1% of
debrominated product.
6
(a) J. W. Yoo, D. Hathcock and M. A. El-Sayed, J. Phys. Chem. A,
002, 106, 2049; (b) P. Concepci o´ n, A. Corma, J. Silvestre-Albero,
V. Franco and J. Y. Chane-Ching, J. Am. Chem. Soc., 2004, 126, 5523;
(c) M. Arai, Y. Takada and Y. Nishiyama, J. Phys. Chem. B, 1998, 102,
capabilities. This kind of bifunctional core–shell NP may provide
useful applications in various types of transition metal-based
catalytic reaction.
2
1
968; (d) M. Zhao and R. M. Crooks, Angew. Chem., Int. Ed., 1999, 38,
We thank K. T. Son for TEM (KBSI-Chuncheon) and Dr. Y. J.
Kim (KBSI) for high voltage TEM (JEM-ARM 1300S) analyses.
This work was supported by a Korean Research Foundation
Grant funded by the Korean Government (MOEHRD) (KRF-
364; (e) S. Mandal, D. Roy, R. V. Chaudhari and M. Sastry, Chem.
Mater., 2004, 16, 3714; (f) N. Guillon, Q. Gao, P. M. Forster,
J.-S. Chang, M. Nogues, S.-E. Park, G. Ferey and A. K. Cheetham,
Angew. Chem., Int. Ed., 2001, 40, 2831.
7
8
Z. Chang, C.-X. Guo, F. Li, X. Duan and M.-L. Zhang, Acta Chim.
Sin., 2002, 60, 298.
2
005-201-c00024) (C.-H. J.), NCRC (R15-2004-024-02002-0),
National R&D for Cancer Control (0320250-2), AOARD
FA520905P0285), Korea Health R&D (02-PJ1-Pg10-20599-
004) and the R&D Program of Fusion Strategies for Advanced
(a) T.-J. Yoon, W. Lee, Y.-S. Oh and J.-K. Lee, New J. Chem., 2003, 27,
227; (b) P. D. Stevens, J. Fan, H. M. R. Gardimalla, M. Yen and
Y. Gao, Org. Lett., 2005, 7, 2085; (c) A. Hu, G. T. Yee and W. Lin,
J. Am. Chem. Soc., 2005, 127, 12486; (d) S. C. Tsang, V. Caps,
I. Paraskevas, D. Chadwick and D. Thompsett, Angew. Chem., Int. Ed.,
(
0
Technologies (J. C.).
2004, 43, 5645.
S. U. Son, Y. Jang, J. Park, H. B. Na, H. M. Park, H. J. Yun, J. Lee
and T. Hyeon, J. Am. Chem. Soc., 2004, 126, 5026.
0 (a) H. Srikanth, E. E. Carpenter, L. Spinu, J. Wiggins, W. Zhou and
C. O’Connor, Mater. Sci. Eng., A, 2001, 304, 901; (b) W. L. Zhou,
E. E. Carpenter, J. Lin, A. Kumbhar, J. Sims and C. J. O’Connor,
Eur. Phys. J. D, 2001, 16, 289.
1 For the preparation of 1, its magnetic properties and full characteriza-
tion data, see: J.-I. Park and J. Cheon, J. Am. Chem. Soc., 2001, 123,
9
Notes and references
1
{ It is noteworthy that we have not observed any hydrogenation product
from the capping molecule in any of these catalytic reactions.
1
(a) S. Sun, C. B. Murray, D. Weller, L. Folks and A. Moser, Science,
000, 287, 1989; (b) V. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko,
1
2
J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler and M. G. Bawendi,
Science, 2000, 290, 314; (c) X. Zhong, M. Han, Z. Dong, T. J. White
and W. J. Knoll, J. Am. Chem. Soc., 2003, 125, 8589; (d) X. Peng,
M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos, J. Am. Chem.
Soc., 1997, 119, 7019.
(a) K. H. Park and Y. K. Chung, Adv. Synth. Catal., 2005, 347, 854; (b)
C. Radloff and N. J. Halas, Nano Lett., 2004, 4, 1323; (c) T. Pham,
J. B. Jackson, N. J. Halas and T. R. Lee, Langmuir, 2002, 18, 4915.
(a) L. N. Lewis, Chem. Rev., 1993, 93, 2693; (b) A. P. Alivisatos, Science,
5
743.
1
2 In terms of the recoverability, it is noteworthy that the turnover
21
frequencies (TOF) of 1 were constant (2 h ) during the seven cycles.
However, in the control experiment using Pt/C (2 mol%) as a
hydrogenation catalyst, the TOFs of Pt/C rapidly reached half the
2
21
21
value (4.16 h ) of the initial TOF (8 h ) at the fifth cycle: 100% (1st
cycle), 100% (2nd cycle), 76% (3rd cycle), 67% (4th cycle), 52% (5th
cycle). Although the TOFs of Pt/C are apparently higher than those of
1, it seems to be difficult to compare the catalytic activity of 1 with that
of Pt/C directly, because there is a significant difference in their nature:
the existence or non-existence of the capping ligand in each system.
For a similar discussion, see: (a) C. A. Stowell and B. A. Korgel,
Nano Lett., 2005, 5, 1203. Special issue on recoverable catalysts and
reagents; (b) J. A. Gladysz, Chem. Rev., 2002, 102, 3215.
3
4
1
996, 271, 933; (c) A. Henglein, Chem. Rev., 1989, 89, 1861.
(a) C.-W. Chen, T. Serizawa and M. Akashi, Chem. Mater., 1999, 11,
381; (b) H. Weller, Angew. Chem., Int. Ed. Engl., 1993, 32, 41; (c)
1
A. Henglein, J. Phys. Chem., 1993, 97, 5457.
(a) J. A. Widegren and R. G. Finke, J. Mol. Catal. A: Chem., 2003, 191,
5
1
87; (b) A. Roucoux, J. Schulz and H. Patin, Chem. Rev., 2002, 102,
13 S. Ichikawa, M. Tada, Y. Iwasawa and T. Ikariya, Chem. Commun.,
2005, 924.
3757.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 1619–1621 | 1621