10.1002/cssc.201700297
ChemSusChem
FULL PAPER
16.
Anderson, E. M.; Katahira, R.; Reed, M.; Resch, M. G.; Karp, E. M.;
neutralization system was used with an electron neutralizer bias
of 1.2 eV and Argon ion beam energy of 10 eV. A 7-point Shirley
background correction was then applied to the Mo 3d XPS spectra
after charge correction. The composition of Mo oxidation states
was estimated by the deconvolution of Mo 3d spectra. The
following constraints were used for deconvolution: (1) Splitting
energy of 3.15 eV for Mo 3d5/2 –Mo 3d3/2, (2) Area intensity ratio
of 3:2 for Mo 3d5/2 – Mo 3d3/2, and (3) Equal full width at half
maximum (FWHM) of Mo 3d5/2 and Mo 3d3/2
Beckham, G. T.; Roman-Leshkov, Y., Reductive Catalytic Fractionation of Corn
Stover Lignin. ACS Sustainable Chem. Eng. 2016.
17.
Mild Heterogeneous Palladium-Catalyzed Cleavage of β-O-4′-Ether Linkages of
Lignin Model Compounds and Native Lignin in Air. ChemCatChem 2014, 6 (1),
179-184.
Galkin, M. V.; Sawadjoon, S.; Rohde, V.; Dawange, M.; Samec, J. S. M.,
18.
Deuss, P. J.; Scott, M.; Tran, F.; Westwood, N. J.; de Vries, J. G.; Barta,
K., Aromatic Monomers by in Situ Conversion of Reactive Intermediates in the
Acid-Catalyzed Depolymerization of Lignin. J. Am. Chem. Soc. 2015, 137 (23),
7456-7467.
31P NMR spectroscopy samples were prepared by
dissolving the POM in acidified D2O with phosphoric acid (1.4
mg/mL, pH 1). The fresh POM, post reaction POM, and reduced
POM were prepared by extracting the POM/TiO2 with 3-4 mL
acidified D2O for 3 hours. The phosphoric acid used to acidify the
D2O was also used as the NMR reference. A 500 MHz NMR
(Bruker) was used to perform the 31P NMR analysis, using a single
pulse program with 64 scans. 225 scans were acquired for each
sample.
19.
Renders, T.; Van den Bosch, S.; Vangeel, T.; Ennaert, T.; Koelewijn, S.-
F.; Van den Bossche, G.; Courtin, C. M.; Schutyser, W.; Sels, B. F., Synergetic
effects of alcohol/water mixing on the catalytic reductive fractionation of poplar
wood. ACS Sustainable Chem. Eng. 2016.
20.
Schutyser, W.; Van den Bosch, S.; Renders, T.; De Boe, T.; Koelewijn,
S. F.; Dewaele, A.; Ennaert, T.; Verkinderen, O.; Goderis, B.; Courtin, C. M.;
Sels, B. F., Influence of bio-based solvents on the catalytic reductive
fractionation of birch wood. Green Chem. 2015, 17 (11), 5035-5045.
21.
compounds. Springer Science & Business Media: 2012.
22. Groysman, A., Corrosion in systems for storage and transportation of
Stephenson, R. M., Handbook of the thermodynamics of organic
petroleum products and biofuels: identification, monitoring and solutions.
Springer Science & Business Media: 2014.
Keywords: Hydrodeoxygenation; Alkylation; Lignin-derived
23.
Wang, L.; Zhang, J.; Yi, X.; Zheng, A.; Deng, F.; Chen, C.; Ji, Y.; Liu, F.;
Meng, X.; Xiao, F.-S., Mesoporous ZSM-5 Zeolite-Supported Ru Nanoparticles
as Highly Efficient Catalysts for Upgrading Phenolic Biomolecules. ACS Catal.
2015, 5 (5), 2727-2734.
model compounds; Lignin upgrading; Polyoxometalate
1.
Holladay, J. E.; White, J. F.; Bozell, J. J.; Johnson, D. Top Value-Added
24.
Güvenatam, B.; Kurşun, O.; Heeres, E. H. J.; Pidko, E. A.; Hensen, E. J.
Chemicals from Biomass - Volume II—Results of Screening for Potential
Candidates from Biorefinery Lignin; DTIC Document: 2007.
M., Hydrodeoxygenation of mono- and dimeric lignin model compounds on
noble metal catalysts. Catal. Today 2014, 233, 83-91.
2.
Werpy, T.; Petersen, G.; Aden, A.; Bozell, J.; Holladay, J.; White, J.;
25.
Luska, K. L.; Migowski, P.; El Sayed, S.; Leitner, W., Synergistic
Manheim, A.; Eliot, D.; Lasure, L.; Jones, S. Top value added chemicals from
biomass. Volume 1-Results of screening for potential candidates from sugars
and synthesis gas; DTIC Document: 2004.
Interaction within Bifunctional Ruthenium Nanoparticle/SILP Catalysts for the
Selective Hydrodeoxygenation of Phenols. Angew. Chem. Int. Ed. 2015, 54
(52), 15750-15755.
3.
Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.; Chandra, R.; Chen, F.;
26.
Schutyser, W.; Van den Bossche, G.; Raaffels, A.; Van den Bosch, S.;
Davis, M. F.; Davison, B. H.; Dixon, R. A.; Gilna, P.; Keller, M.; Langan, P.;
Naskar, A. K.; Saddler, J. N.; Tschaplinski, T. J.; Tuskan, G. A.; Wyman, C. E.,
Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science
2014, 344 (6185).
Koelewijn, S.-F.; Renders, T.; Sels, B. F., Selective Conversion of Lignin-
Derivable 4-Alkylguaiacols to 4-Alkylcyclohexanols over Noble and Non-Noble-
Metal Catalysts. ACS Sustainable Chem. Eng. 2016, 4 (10), 5336-5346.
27.
Mortensen, P. M.; Grunwaldt, J.-D.; Jensen, P. A.; Jensen, A. D.,
4.
chemistry. CRC press: 2016.
5. Sakakibara, A., A structural model of softwood lignin. Wood Sci. Technol.
1980, 14 (2), 89-100.
Heitner, C.; Dimmel, D.; Schmidt, J., Lignin and lignans: advances in
Influence on nickel particle size on the hydrodeoxygenation of phenol over
Ni/SiO2. Catal. Today 2016, 259, Part 2, 277-284.
28.
Dongil, A. B.; Ghampson, I. T.; Garcia, R.; Fierro, J. L. G.; Escalona, N.,
Hydrodeoxygenation of guaiacol over Ni/carbon catalysts: effect of the support
6.
Zhao, X.; Cheng, K.; Liu, D., Organosolv pretreatment of lignocellulosic
and Ni loading. RSC Adv. 2016, 6 (4), 2611-2623.
biomass for enzymatic hydrolysis. Appl Microbiol. Biot.. 2009, 82 (5), 815-827.
29.
Mochizuki, T.; Chen, S.-Y.; Toba, M.; Yoshimura, Y., Deoxygenation of
7.
Wyman, C. E.; Dale, B. E.; Elander, R. T.; Holtzapple, M.; Ladisch, M.
guaiacol and woody tar over reduced catalysts. Appl. Catal., B 2014, 146, 237-
R.; Lee, Y. Y., Coordinated development of leading biomass pretreatment
243.
technologies. Bioresour. Technol. 2005, 96 (18), 1959-1966.
30.
Liu, X.; Xu, L.; Xu, G.; Jia, W.; Ma, Y.; Zhang, Y., Selective
8.
Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y. Y.; Holtzapple, M.;
Hydrodeoxygenation of Lignin-Derived Phenols to Cyclohexanols or
Cyclohexanes over Magnetic CoNx@NC Catalysts under Mild Conditions. ACS
Catal. 2016, 6 (11), 7611-7620.
Ladisch, M., Features of promising technologies for pretreatment of
lignocellulosic biomass. Bioresour. Technol. 2005, 96 (6), 673-686.
9.
Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M.,
31.
Wang, G.-H.; Cao, Z.; Gu, D.; Pfänder, N.; Swertz, A.-C.; Spliethoff, B.;
The Catalytic Valorization of Lignin for the Production of Renewable Chemicals.
Chem. Rev. 2010, 110 (6), 3552-3599.
Bongard, H.-J.; Weidenthaler, C.; Schmidt, W.; Rinaldi, R.; Schüth, F., Nitrogen-
Doped Ordered Mesoporous Carbon Supported Bimetallic PtCo Nanoparticles
for Upgrading of Biophenolics. Angew. Chem. Int. Ed. 2016, 55 (31), 8850-8855.
10.
Constant, S.; Wienk, H. L. J.; Frissen, A. E.; Peinder, P. d.; Boelens, R.;
van Es, D. S.; Grisel, R. J. H.; Weckhuysen, B. M.; Huijgen, W. J. J.; Gosselink,
R. J. A.; Bruijnincx, P. C. A., New insights into the structure and composition of
technical lignins: a comparative characterisation study. Green Chem. 2016, 18
(9), 2651-2665.
32.
Viljava, T. R.; Komulainen, R. S.; Krause, A. O. I., Effect of H2S on the
stability of CoMo/Al2O3 catalysts during hydrodeoxygenation. Catal. Today
2000, 60 (1–2), 83-92.
33.
Nimmanwudipong, T.; Runnebaum, R. C.; Block, D. E.; Gates, B. C.,
11.
Van den Bosch, S.; Schutyser, W.; Vanholme, R.; Driessen, T.;
Catalytic Conversion of Guaiacol Catalyzed by Platinum Supported on Alumina:
Reaction Network Including Hydrodeoxygenation Reactions. Energ. Fuel. 2011,
25 (8), 3417-3427.
Koelewijn, S. F.; Renders, T.; De Meester, B.; Huijgen, W. J. J.; Dehaen, W.;
Courtin, C. M.; Lagrain, B.; Boerjan, W.; Sels, B. F., Reductive lignocellulose
fractionation into soluble lignin-derived phenolic monomers and dimers and
processable carbohydrate pulps. Energy Environ. Sci. 2015, 8 (6), 1748-1763.
34.
Zhu, X.; Lobban, L. L.; Mallinson, R. G.; Resasco, D. E., Bifunctional
transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. J.
Catal. 2011, 281 (1), 21-29.
12.
Song, Q.; Wang, F.; Cai, J.; Wang, Y.; Zhang, J.; Yu, W.; Xu, J., Lignin
depolymerization (LDP) in alcohol over nickel-based catalysts via
a
35.
Foo, G. S.; Rogers, A. K.; Yung, M. M.; Sievers, C., Steric Effect and
fragmentation-hydrogenolysis process. Energy Environ. Sci. 2013, 6 (3), 994-
Evolution of Surface Species in the Hydrodeoxygenation of Bio-Oil Model
1007.
Compounds over Pt/HBEA. ACS Catal. 2016, 6 (2), 1292-1307.
13.
Ferrini, P.; Rinaldi, R., Catalytic Biorefining of Plant Biomass to Non-
36.
Zhu, X.; Mallinson, R. G.; Resasco, D. E., Role of transalkylation
Pyrolytic Lignin Bio-Oil and Carbohydrates through Hydrogen Transfer
Reactions. Angew. Chem. Int. Ed. 2014, 53 (33), 8634-8639.
reactions in the conversion of anisole over HZSM-5. Appl. Catal., A 2010, 379
(1–2), 172-181.
14.
Parsell, T. H.; Owen, B. C.; Klein, I.; Jarrell, T. M.; Marcum, C. L.;
37.
Prasomsri, T.; To, A. T.; Crossley, S.; Alvarez, W. E.; Resasco, D. E.,
Haupert, L. J.; Amundson, L. M.; Kenttamaa, H. I.; Ribeiro, F.; Miller, J. T.; Abu-
Omar, M. M., Cleavage and hydrodeoxygenation (HDO) of C-O bonds relevant
to lignin conversion using Pd/Zn synergistic catalysis. Chem. Sci. 2013, 4 (2),
806-813.
Catalytic conversion of anisole over HY and HZSM-5 zeolites in the presence
of different hydrocarbon mixtures. Appl. Catal., B 2011, 106 (1–2), 204-211.
38.
Lee, W.-S.; Kumar, A.; Wang, Z.; Bhan, A., Chemical Titration and
Transient Kinetic Studies of Site Requirements in Mo2C-Catalyzed Vapor
15.
Pepper, J. M.; Lee, Y. W., Lignin and related compounds. I. A
Phase Anisole Hydrodeoxygenation. ACS Catal. 2015, 5 (7), 4104-4114.
comparative study of catalysts for lignin hydrogenolysis. Can. J.Chemistry 1969,
47 (5), 723-727.
This article is protected by copyright. All rights reserved.