Page 9 of 10
Journal of the American Chemical Society
Dranka, M.; Żukowska, G. Z.; Urbańczyk, M.; Michalak, M. Con-
Working as a Catalyst in Hydroboration and Dehydrocoupling. J.
Am. Chem. Soc. 2016, 138, 2548–2551. (c) Yang, Z.; Zhong, M.; Ma,
X.; De, S.; Anusha, C.; Parameswaran, P.; Roesky, H. W. An Alu-
minum Hydride That Functions like a Transition-Metal Catalyst.
Angew. Chem. Int. Ed. 2015, 54, 10225–10229. (d) Nikonov, G. I.
New Tricks for an Old Dog: Aluminum Compounds as Catalysts
in Reduction Chemistry. ACS. Catal. 2017, 7, 7257–7266. (e)
Zhang, G.; Wu, J.; Zeng, H.; Neary, C. M.; Devany, M.; Zheng. S.;
Dub, A. P. Dearomatization and Functionalization of Terpyridine
Ligands Leading to Unprecedented Zwitterionic Meisenheimer
Aluminum Complexes and Their Use in Catalytic Hydroboration.
ACS. Catal. 2019, 9, 874–884.
f) Nikonov, G. I. New Tricks for an Old Dog: Aluminum Com-
pounds as Catalysts in Reduction Chemistry. ACS. Catal. 2017, 7,
7257–7266.
(10) (a) Pollard, V. A.; Orr, S. A.; McLellan, R.; Kennedy, A. R.; He-
via, E.; Mulvey, R. E. Lithium Diamidodihydridoaluminates: Bi-
metallic Cooperativity in Catalytic Hydroboration and Metalla-
tion Applications. Chem. Commun. 2018, 54, 1233–1236. (b) Jakhar,
V. K.; Barman, M. K.; Nembenna, S. Aluminum Monohydride Cat-
alyzed Selective Hydroboration of Carbonyl Compounds. Org.
Lett. 2016, 18, 4710–4713.
trolling the Stereoselectivity of Rac-LA Polymerization by Chiral
Recognition Induced the Formation of Homochiral Dimeric Metal
Alkoxides. Polym. Chem. 2016, 7, 2022–2036. (l) Schumacher, A.;
Bernasconi, M.; Pfaltz, A. Chiral N-Heterocyclic Carbene/Pyridine
Ligands for the Iridium-Catalyzed Asymmetric Hydrogenation of
Olefins. Angew. Chem. Int. Ed. 2013, 52, 7422–7425.
(3) Simons, F. E. R.; Simons, K. J. Histamine and H1-antihista-
mines: Celebrating a century of progress. J. Allergy Clin. Immunol.
2011, 128, 1139−1150.
(4) (a) Shin, C.; Okabe, A.; Ito, A.; Ito, A.; Yonezawa, Y. Novel Syn-
thesis of the Main Central 2,3,6-Trisubstituted Pyridine Skeleton
[Fragment A-B-C] of a Macrobicyclic Antibiotic, Cyclothiazomy-
cin. Bull. Chem. Soc. Jpn. 2002, 75, 1583–1596.
(b) Uenishi, J.; Hamada, M.; Aburatani, S.; Matsui, K.; Yonemitsu,
O.; Tsukube, H. Synthesis of Chiral Nonracemic 1-(2-Pyridi-
nyl)Ethylamines:ꢀ Stereospecific Introduction of Amino Function
onto the 2-Pyridinylmethyl Carbon Center. J. Org. Chem. 2004,
69, 6781–6789.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(c) Uenishi, J.; Hamada, M. Synthesis of Enantiomerically Pure 8-
Substituted 5,6,7,8-Tetrahydroquinolines. Synthesis, 2002, 5,
0625–0630.
(5) Truppo, M. D.; Pollard, D.; Devine, P. Enzyme-Catalyzed En-
antioselective Diaryl Ketone Reductions. Org. Lett. 2007, 9, 335–
338.
(11) Pyykkö, P.; Atsumi, M. Molecular Double-Bond Covalent Ra-
dii for Elements Li–E112. Chem. Eur. J. 2009, 15, 12770–12779.
(12) (a) Yasuda, M.; Yoshioka, S.; Nakajima, H.; Chiba, K.; Baba, A.
Fine-Tuning of Boron Complexes with Cage-Shaped Ligand Ge-
ometry:ꢀ Rational Design of Triphenolic Ligand as a Template for
Structure Control. Org. Lett. 2008, 10, 929–932. (b) Nakajima, H.;
Yasuda, M.; Takeda, R.; Baba, A. Recognition of Aromatic Com-
pounds by π Pocket within a Cage‐Shaped Borate Catalyst. Angew.
Chem. Int. Ed. 2012, 51, 3867–3870.
(13) (a) Power, M. B.; Barron, A. R.; Bott, S. G.; Atwood, J. L. π-Face
Selectivity of Coordinated Ketones to Nucleophilic Additions: The
Importance of Aluminum-Oxygen π-Bonding. J. Am. Chem. Soc.
1990, 112, 3446–3451. (b) Power, M. B.; Bott, S. G.; Clark, D. L.; At-
wood, J. L.; Barron, A. R. Interaction of Organic Carbonyls with
Sterically Crowded Aryloxide Compounds of Aluminum. Organo-
metallics 1990, 9, 3086–3097.
(6) Corey, E. J.; Helal, C. J. Asymmetric Synthesis of (S)-Carbinox-
amine. New Aspects of Oxazaborolidine-Catalyzed Enantioselec-
tive Carbonyl Reduction. Tetrahedron Lett. 1996, 37, 5675–5678.
(7) (a) Ohkuma, T.; Koizumi, M.; Yoshida, M.; Noyori, R. General
Asymmetric Hydrogenation of Hetero-Aromatic Ketones. Org.
Lett. 2000, 2, 1749–1751. (b) Lee, C.-T.; Lipshutz, B. H. Nonracemic
Diarylmethanols From CuH-Catalyzed Hydrosilylation of Diaryl
Ketones. Org. Lett. 2008, 10, 4187–4190. (c) Tao, X.; Li, W.; Ma, X.;
Li, X.; Fan, W.; Xie, X.; Ayad, T.; Ratovelomanana-Vidal, V.;
Zhang, Z. Ruthenium-Catalyzed Enantioselective Hydrogenation
of Aryl-Pyridyl Ketones. J. Org. Chem. 2012, 77, 612–616. (d) Yang,
H.; Huo, N.; Yang, P.; Pei, H.; Lv, H.; Zhang, X. Rhodium Catalyzed
Asymmetric Hydrogenation of 2-Pyridine Ketones. Org. Lett.
2015, 17, 4144–4147. (e) Wang, B.; Zhou, H.; Lu, G.; Liu, Q.; Jiang,
X. Bifunctional Oxo-Tethered Ruthenium Complex Catalyzed
Asymmetric Transfer Hydrogenation of Aryl N-Heteroaryl Ke-
tones. Org. Lett. 2017, 19, 2094–2097. (f) Zheng, L.-S.; Llopis, Q.;
Echeverria, P.-G.; Férard, C.; Guillamot, G.; Phansavath, P.; Ra-
tovelomanana-Vidal, V. Asymmetric Transfer Hydrogenation of
(Hetero)Arylketones with Tethered Rh(III)–N-(p-Tolylsulfonyl)-
1,2-Diphenylethylene-1,2-Diamine Complexes: Scope and Limita-
tions. J. Org. Chem. 2017, 82, 5607–5615. (g) Liu, Q.; Wang, C.;
Zhou, H.; Wang, B.; Lv, J.; Cao, L.; Fu, Y. Iridium-Catalyzed Highly
Enantioselective Transfer Hydrogenation of Aryl N-Heteroaryl
Ketones with N-Oxide as a Removable Ortho-Substituent. Org.
Lett. 2018, 20, 971–974.
(8) (a) Stephan, D. W.; Erker, G. Frustrated Lewis Pair Chemistry:
Development and Perspectives. Angew. Chem. 2015, 54, 2 – 44. (b)
Wilkins, L. C.; Melen, R. L. Enantioselective Main Group Catalysis:
Modern Catalysts for Organic Transformations. Coord. Chem.
Rev. 2016, 324, 123 – 139. (c) Adams, M. R; Tien, C.-H.; McDonald,
R.; Speed, A. W. H. Asymmetric Imine Hydroboration Catalyzed
by Chiral Diazaphospholenes. Angew. Chem. 2017, 56, 16660 –
16663.
(9) (a) Li, W.; Ma, X.; Walawalkar, M. G.; Yang, Z.; Roesky, H. W.
Soluble Aluminum Hydrides Function as Catalysts in Deprotona-
tion, Insertion, and Activation Reactions. Coord. Chem. Rev. 2017,
350, 14–29. (b) Yang, Z.; Zhong, M.; Ma, X.; Nijesh, K.; De, S.;
Parameswaran, P.; Roesky, H. W. An Aluminum Dihydride
(14) Prashanth, B.; Bhandari, M.; Ravi, S.; Shamasundar, K. R.;
Singh, S. Electronically Unsaturated Three Coordinate Aluminum
Hydride and Organoaluminum Cations. Chem. Eur. J. 2018, 24,
4794–4799.
(15) (a) Morokuma, K. Molecular Orbital Studies of Hydrogen
Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and
H2CO···2H2O. J. Chem. Phys. 1971, 55, 1236–1244. (b) Ziegler, T.;
Rauk, A. On the calculation of bonding energies by the Hartree
Fock Slater method. Theor. Chim. Acta. 1977, 46, 1–10. (c) Fernan-
dez, I.; Bickelhaupt, F. M. The activation strain model and molec-
ular orbital theory: understanding and designing chemical reac-
tions. Chem. Soc. Rev. 2014, 43, 4953-4967. (d) Falivene, L.; Kozlov,
S. M.; Cavallo, L. Constructing Bridges between Computational
Tools in Heterogeneous and Homogeneous Catalysis. ACS Catal.
2018, 8, 5637-5656.
(16) (a) Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.; Ragone, F.;
Scarano, V.; Cavallo, L. SambVca: A Web Application for the Cal-
culation of the Buried Volume of N‐Heterocyclic Carbene Lig‐
ands. Eur. J. Inorg. Chem. 2009, 1759-1766. (b) Falivene, L.; Cre-
dendino, R.; Poater, A.; Petta, A.; Serra, L.; Oliva, R.; Scarano, V.;
Cavallo, L. SambVca 2. A Web Tool for Analyzing Catalytic Pock-
ets with Topographic Steric Maps. Organometallics. 2016, 35,
2286-2293. (c) Falivene, L.; Cao, Z.; Petta, A.; Serra, L.; Poater, A.;
Oliva, R.; Scarano, V.; Cavallo, L. Towards the online computer-
aided design of catalytic pockets. Nat. Chem. 2019, 11, 872-879.
9
ACS Paragon Plus Environment