Page 5 of 7
Pleas eC dh oe mn oi ct a al dS jcui es tn mc eargins
DOI: 10.1039/C8SC01924J
Journal Name
ARTICLE
2
(90000 scans). Broader spectral windows are provided in Figures S7 and S8 and
H NMR spectra for IMes* and 2* are given in Figure S9.
for assistance with the NMR measurements, Dr. K. Larmier and
Dr. T. Margossian for XAS measurements and Dr F. Krumeich
1
The peak at 175 ppm on the CP spectrum of 2* (Figure 3c) is
(ScopeM) for TEM images.
1
3
attributed to the C-labeled carbenic carbon of IMes* in
interaction with the support, as this peak is also found for the
fully passivated SiO2-TMS support contacted with IMes*
Notes and references
(IMes*/SiO2-TMS, Figures 4d and S7e) and may be that of the
52
1.
J. C. Lin, R. T. Huang, C. S. Lee, A. Bhattacharyya, W. S.
carbene coordinated to Si atoms in TMS groups or siloxane
Hwang and I. J. Lin, Chem. Rev., 2009, 109, 3561-3598.
C. M. Crudden and D. P. Allen, Coord. Chem. Rev., 2004,
bridges. Peaks at 133 and 145 ppm in the CP spectrum of 2*
2
3
.
.
(
Figure 3c) are also observed for non-passivated SiO2
-700
1
2
48, 2247-2273.
3
treated with IMes* (Figure S7f); they are assigned to C-
labeled imidazolium species formed on the support upon
M. N. Hopkinson, C. Richter, M. Schedler and F. Glorius,
Nature, 2014, 510, 485-496.
deprotonation of residual silanols by IMes*. The observation 4.
of peaks attributed to surface species on the support itself is
T. Droge and F. Glorius, Angew. Chem. Int. Ed., 2010, 49,
6940-6952.
also consistent with elemental analysis of
2
*, which shows the 5.
W. A. Herrmann and C. Köcher, Angew. Chem. Int. Ed.,
1
997, 36, 2162-2187.
G. C. Vougioukalakis and R. H. Grubbs, Chem. Rev., 2010,
10, 1746-1787.
presence of an excess of the ligand per available surface Cu
atoms.
6
7
8
9
1
.
1
Collectively, these results prove the immobilization of IMes in
.
R. D. J. Froese, C. Lombardi, M. Pompeo, R. P. Rucker and
M. G. Organ, Acc. Chem. Res., 2017, 50, 2244-2253.
E. Peris and R. H. Crabtree, Coord. Chem. Rev., 2004, 248,
239-2246.
D. Zhao, L. Candish, D. Paul and F. Glorius, ACS Cat., 2016,
, 5978-5988.
2* with a partial coverage of the support and actual ligand-
particle interaction through genuine coordination of the
carbenic carbon to the copper particle.
.
2
.
6
Conclusion
0.
J. W. Sprengers, J. Wassenaar, N. D. Clement, K. J. Cavell
and C. J. Elsevier, Angew. Chem. Int. Ed., 2005, 44, 2026-
In conclusion, we report the controlled synthesis of small Cu
2
029.
3
NPs supported on Me Si-passivated SiO2-700 through SOMC.
1
1
1.
2.
A. V. Zhukhovitskiy, M. J. MacLeod and J. A. Johnson,
Chem. Rev., 2015, 115, 11503-11532.
K. Salorinne, R. W. Y. Man, C. H. Li, M. Taki, M. Nambo
and C. M. Crudden, Angew. Chem. Int. Ed., 2017, 56,
The supported Cu NPs are highly active for the hydrogenation
alkynes, and introduction of an NHC ligand greatly improves
the selectivity of these particles for semihydrogenation of
phenylalkyl, dialkyl and diaryl internal alkynes generating the
6
198-6202.
corresponding cis-olefins with very high selectivities (>95%) at 13.
full conversion. This increased selectivity likely arises from the
binding of IMes ligand to Cu NPs, in a genuine coordination
C. M. Crudden, J. H. Horton, Ebralidze, II, O. V. Zenkina, A.
B. McLean, B. Drevniok, Z. She, H. B. Kraatz, N. J. Mosey,
T. Seki, E. C. Keske, J. D. Leake, A. Rousina-Webb and G.
Wu, Nat. Chem., 2014, 6, 409-414.
G. Wang, A. Ruhling, S. Amirjalayer, M. Knor, J. B. Ernst, C.
Richter, H. J. Gao, A. Timmer, H. Y. Gao, N. L. Doltsinis, F.
Glorius and H. Fuchs, Nat. Chem., 2017, 9, 152-156.
J. Vignolle and T. D. Tilley, Chem. Commun., 2009, DOI:
1
3
which has been confirmed by C NMR spectroscopy. This work
shows that inexpensive and readily available supported Cu
nanoparticles can be turned into highly selective catalysts by
choosing appropriate coordinating ligands to modulate their
activity and selectivity. Our group is currently exploring this
research direction.
1
4.
1
1
1
5.
6.
7.
1
0.1039/b913884f, 7230-7232.
E. C. Hurst, K. Wilson, I. J. S. Fairlamb and V. Chechik, New
J. Chem., 2009, 33, 1837.
C. Richter, K. Schaepe, F. Glorius and B. J. Ravoo, Chem.
Commun., 2014, 50, 3204-3207.
Conflicts of interest
There are no conflicts to declare.
18.
L. M. Martinez-Prieto, A. Ferry, L. Rakers, C. Richter, P.
Lecante, K. Philippot, B. Chaudret and F. Glorius, Chem.
Commun., 2016, 52, 4768-4771.
1
9.
J. B. Ernst, S. Muratsugu, F. Wang, M. Tada and F. Glorius,
J. Am. Chem. Soc., 2016, 138, 10718-10721.
Acknowledgements
We are grateful to the Scientific Equipment Program of ETH 20.
Zürich and the SNSF (R’Equip grant 206021_150709/1) for
financial support of the high throughput catalyst screening
F. Novio, D. Monahan, Y. Coppel, G. Antorrena, P.
Lecante, K. Philippot and B. Chaudret, Chem. Eur. J., 2014,
20, 1287-1297.
2
1.
K. V. Ranganath, J. Kloesges, A. H. Schafer and F. Glorius,
Angew. Chem. Int. Ed., 2010, 49, 7786-7789.
Z. Cao, D. Kim, D. Hong, Y. Yu, J. Xu, S. Lin, X. Wen, E. M.
Nichols, K. Jeong, J. A. Reimer, P. Yang and C. J. Chang, J.
Am. Chem. Soc., 2016, 138, 8120-8125.
Z. Cao, J. S. Derrick, J. Xu, R. Gao, M. Gong, E. M. Nichols,
P. T. Smith, X. Liu, X. Wen, C. Coperet and C. J. Chang,
Angew. Chem. Int. Ed., 2018, 57, 4981-4985.
facility (HTE@ETH). N.K. acknowledges support from the ETHZ
Postdoctoral Fellowship Program and from the Marie Curie
Actions for People COFUND Program. H.-J.L. was partially
funded by CCEM. A.F. thanks the Holcim Stiftung for a
habilitation fellowship. The development of supported Cu
catalysts was also partially funded by the SCCER Heat and
Energy Storage. The authors thanks W.-C. Liao and C. Gordon
2
2.
2
3.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins