Page 7 of 9
Green Chemistry
DOI: 10.1039/C8GC00619A
Journal Name
ARTICLE
coordinating capacity, P can strongly coordinate with Co NPs, even
to form CoP species, which has been elucidated by XPS
characterizations. Such interaction resulted in the Co has a partial
positive charge (δ+) due to the electron transfer from Co to P, which
is beneficial for the preferential adsorption of the oxygen atom in
the NO2 group and formate anions.19b In the third step, when
nitroarenes is added in the catalytic system, two parts of the
hydrogen in NH+ and CoH- prefer to react with the nitro groups to
generate an aniline with no hydrogen detected, thereby completing
the entire catalytic cycle.
Y6710619KL) and 13th-Five Key Project of the Chinese
Academy of Sciences (Grant No. Y7720519KL). We thank
Professor Xiufang Chen (QIBEBT) for generous supply of
bamboo shoots.
Notes and references
1
2
a) Lawrence, S. A. Amines: Synthesis, Properties and
Applications (Cambridge Univ. Press, 2004); b) Downing, R.
S.; Kunkeler, P. J.; van Bekkum, H. Catal. Today, 1997, 37
,
121-136; c) Ono, N. The Nitro Group in Organic Synthesis
(Wiley-VCH, 2001).
a) Corma, A.; Serna, P. Science 2006, 313, 332-334; b) Blaser,
H. U.; Steiner, H.; Studer, M. ChemCatChem 2009, 1, 210-22;
b) Jagadeesh, R. V.; Surkus, A.-E.; Junge, H.; Pohl, M.-M.;
Radnik, J.; Rabeah, J.; Huan, H. M.; Schunemann, V.;
Brückner, A.; Beller, M. Science 2013, 342, 1073-1076; c)
Zhang, S.; Chang, C.-R.; Huang, Z.-Q.; Li, J.; Wu, Z.; Ma, Y.;
Zhang, Z.; Wang, Y.; Qu, Y. J. Am. Chem. Soc. 2016, 138
,
2629-2637; d) Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.;
Qiao, B. T.; Yang, X. F.; Huang, Y.Q.; Miao, S.; Liu, J. Y.; Zhang,
T. Nat. Commun. 2014, 5, 5643-5651; e) Nie, R. F.; Wang, J.
H.; Wang, L. N.; Qin, Y.; Chen, P.; Hou, Z. Y. Carbon 2012, 50
586-596.
,
3
4
a) Siegrist, U.; Baumeister, P.; Blaser, H.-U. Chem. Ind.
(Dekker) 1998, 75 207-210; b) Corma, A.; Serna, P.;
,
Concepción, P. Calvino, J. J. J. Am. Chem. Soc. 2008, 130
8748-8753.
Scheme 1. Proposed mechanism for transfer hydrogenation
of nitroarenes.
,
a) Zhou, P.; Zhang, Z. H. ChemSusChem 2017, 10, 1892-1897;
b) Liu, Z.; Dong, W. H.; Cheng, S. S.; Guo, S.; Shang, N. Z.;
Gao, S. T.; Feng, C.; Wang, C.; Wang, Z. Catal. Commun. 2017,
95, 50-53; c) Mei, N.; Liu, B. Int. J. Hydrogen Energy 2016,
41, 17960-17966; d) Ma, X.; Zhou, Y-X.; Liu, H.; Li, Y.; Jiang,
H.-L. A Chem. Commun. 2016, 52, 7719-7722; e) Gawande,
M. B.; Guo, H. Z.; Rathi, A. K.; Branco, P. S. Y.; Chen, Z.;
Conclusions
In conclusion, we developed a heterogeneous, inexpensive, and
active cobalt NPs encapsulated with a N,P-codoped carbon shell
derived from the biomass. The as-prepared catalysts possess large
surface area, high pore volume with hierarchical micro-, meso-, and
macro-pores structure. The synergism of N and P dopants on the
graphitic carbon and confined Co NPs produces extremely high
active sites for catalytic transfer hydrogenation of functionalized
nitroarenes using formic acid or ammonium formate as hydrogen
donor. The most active catalyst showed outstanding activity and a
broad variety of functionalized nitroarenes can be efficiently
reduced to their corresponding anilines with exclusive selectivity
and great tolerance of functional groups. The catalyst also
demonstrates high stability and can be easily separated using
simple external magnet for at least 6 successive reuses without
significant loss in both activity and selectivity. Hence, this study
Varma, R. S.; Peng, D.-L. RSC Adv. 2013, 3, 1050-1054; f) Li,
Y.; Zhou, Y.-X.; Ma, X.; Jiang, H.-L. Chem. Commun. 2016, 52,
4199-4202.
Selected recent reviews: a) Morris, R. H. Acc. Chem. Res.
2015, 48, 1494-1502; b) Chirik, P. J. Acc. Chem. Res. 2015, 48
5
,
1687-1695; c) Chakraborty, S.; Bhattacharya, P.; Dai, H.;
Guan, H. Acc. Chem. Res. 2015, 48, 1995-2003; d) He, L.;
Weniger, F.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed.
2016, 55, 12582-12594 and references therein.
Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M.-
M.; Radnik, J.; Surkus, A.-E.; Rabeah, J.; Junge, K.; Junge, H.;
Nielsen, M.; Brückner, A.; Beller, M. Nat. Chem. 2013, 5, 537-
6
7
543.
a) Wei, Z. Z.; Wang, J. S.; Mao, J.; Su, D. F.; Jin, H. Y.; Wang, Y.
H.; Xu, F.; Li, H. R.; Wang, Y. ACS Catal. 2015, , 4783-4789;
b) Wang, X.; Li, Y. W. J. Mol. Catal. A: Chem. 2016, 420, 56-
65; c) Schwob, T.; Kempe, R. Angew. Chem. Int. Ed. 2016, 55
provides
a
new strategy for preparing biomass-derived
5
multicomponent hybrid materials, which can be further applied in
other organic transformations and are currently underway in our
,
15175-15179; d) Zhang, F. W.; Zhao, C.; Chen, S.; Li, H.; Yang,
H.Q.; Zhang, X.-M. J. Catal. 2017, 348, 212-222; e) Liu, L. C.;
Concepcion, P.; Corma, J. Catal. 2016, 340, 1-9; f) Chen, F.;
Surkus, A.-E.; He, L.; Pohl, M.-M.; Radnik, J.; Topf, C.; Junge,
K.; Beller, M. J. Am. Chem. Soc. 2015, 137, 11718-11724; g)
Jagadeesh, R. V.; Murugesan, K.; Alshammari, A. S.;
Neumann, H.; Pohl, M.-M.; Radnik, J.; Beller, M. Science
2017, 358, 326-332.
lab
.
Conflicts of interest
There are no conflicts to declare.
8
9
a) Liu, W. G.; Zhang, L. L.; Yang, W. S.; Liu, X. Y.; Yang, X. F.;
Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Chem. Sci.
2016, 7, 5758-5764; b) Zhou, P.; Zhang, Z. H.; Jiang, L.; Yu, C.
L.; Lv, K. L. Appl. Catal. B: Environ. 2017, 210, 522-532.
(9) a) Sahoo, B.; Surkus, A.-E.; Pohl, M.-M.; Radnik, J.;
Schneider, M.; Bachmann, S.; Scalone, M.; Junge, K.; Beller,
M. Angew. Chem. Int. Ed. 2017, 56, 11242-11247; b) Bi, Q.-Y.;
Acknowledgements
We gratefully acknowledge the start-up financial support from
Qingdao Institute of Bioenergy and Bioprocess Technology
(QIBEBT), Chinese Academy of Sciences (Grant NO.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7