Angewandte Chemie International Edition
10.1002/anie.202006826
COMMUNICATION
In conclusion, we present herein an unprecedented
methodology for the selective mono--arylation of acetone with
11006–11009; g) W. C. Fu, C. M. So, W. K. Chow, O. Y. Yuen, F. Y.
(
hetero)aryl chlorides and phenolic derivatives using earth
Kwong, Org. Lett. 2015, 17, 4612–4615; h) W. C. Fu, Z. Zhou, F. Y.
Kwong, Organometallics 2016, 35, 1553–1558. For an example of
palladium-catalysed α-arylation of acetone with aryl mesylate
substrates, see: i) P. G. Alsabeh, M. Stradiotto, Angew. Chem. 2013,
abundant and cost effective nickel complexes as efficient
catalysts. Key to implementing this methodology was the
privileged structure of Josiphos ligand L1. The catalytic system
demonstrated a high compatibility with several functional groups
and the desired products are usually obtained in good to
excellent yields. Interestingly, complex structures could also be
encompassed in the substrate scope. Furthermore, the
methodology has been extended to the unprecedented coupling
of acetone with phenol derivatives. Mechanistic studies allowed
the isolation and characterization of key Ni(0) and Ni(II) catalytic
intermediates. The difference in the reactivity between
Ni/Josiphos systems and other Ni/diphosphine catalyst systems
likely results from enhanced stabilization of Ni(II)-aryl
intermediates with Josiphos ligands. Finally, we demonstrate
that air and thermally stable Ni(II) aryl complexes display
enhanced catalytic activity providing a very practical protocol.
Future developments with this catalytic system are under
investigation in our laboratory.
1
25, 7383–7387; Angew. Chem. Int. Ed. 2013, 52, 7242–7246.
S. G. Koenig, D. K. Leahy, A. S. Wells, Org. Process Res. Dev. 2018,
2, 1344–1359.
[
5]
6]
2
[
For enantioselective reactions with cyclic ketones, see: S. Ge, J. F.
Hartwig, J. Am. Chem. Soc. 2011, 133, 16330–16333.
[7]
For reactions with benzylic ketones, see: a) M. Henrion, M. J. Chetcuti,
V. Ritleng, Chem. Commun. 2014, 50, 4624–4627; b) J. Li, Z.-X. Wang,
Org. Biomol. Chem. 2016, 14, 7579–7584; c) J. A. Fernández-Salas, E.
Marelli, D. B. Cordes, A. M. Z. Slawin, S. P. Nolan, Chem. Eur. J. 2015,
21, 3906–3909.
[8]
For reactions of substituted ketones with phenol derivatives, see: a) J.
Cornella, E. P. Jackson, R. Martin, Angew. Chem. 2015, 127, 4147–
4150; Angew. Chem. Int. Ed. 2015, 54, 4075–4078; b) R. Takise, K.
Muto, J. Yamaguchi, K. Itami, Angew. Chem. 2014, 126, 6909–6912;
Angew. Chem. Int. Ed. 2014, 53, 6791–6794.
[9]
a) S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299–
3
09; b) J. B. Diccianni, T. Diao, Trends in Chemistry 2019, 1, 830–844;
c) V. P. Ananikov, ACS Catal. 2015, 5, 1964–1971.
10] T. Satoh, Y. Kametani, Y. Terao, M. Miura, M. Nomura, Tetrahedron
Lett. 1999, 40, 5345–5348.
[11] a) G. Yin, I. Kalvet, U. Englert, F. Schoenebeck, J. Am. Chem. Soc.
015, 137, 4164–4172; b) M. M. Beromi, A. Nova, D. Balcells, A. M.
[
Acknowledgements
2
Brasacchio, G. W. Brudvig, L. M. Guard, N. Hazari, D. J. Vinyard, J. Am.
Chem. Soc. 2017, 139, 922–936.
Financial support from the Université de Lyon, IDEXLYON
project (ANR-16_IDEX-0005) and the Agence Nationale de la
Recherche (ANR-JCJC-2016-CHAUCACAO) is gratefully
acknowledged. S. A. D. thanks the French Ministry of Higher
[
12] a) R. A. Green, J. F. Hartwig, Angew. Chem. 2015, 127, 3839–3843;
Angew. Chem. Int. Ed. 2015, 54, 3768–3772; b) A. Borzenko, N. L.
Rotta-Loria, P. M. MacQueen, C. M. Lavoie, R. McDonald, M. Stradiotto,
Angew. Chem. 2015, 127, 3844–3848; Angew. Chem. Int. Ed. 2015, 54,
3773–3777; c) J. Schranck, P. Furer, V. Hartmann, A. Tlili, Eur. J. Org.
Chem. 2017, 3496–3500; d) P. M. MacQueen, M. Stradiotto, Synlett
Education and Research for
a doctoral fellowship. We
acknowledge Solvias AG for generous donations of Josiphos
ligands L1 (SL-J004-1), L2 (SL-J003-1), SL-J001-1, SL-J505-1
as well as Ni/Josiphos complexes IIa (SK-J004-1n), SK-J003-1n,
SK-J002-1n, SK-J014-1n.
2017, 28, 1652-1656.
[
13] For rare examples of Nickel-catalyzed arylation of substituted ketones
with phenol derivatives, see ref [8].
[
14] -extended systems are generally required in nickel catalyzed C–O
bond cleavage processes, for a general discussion see: M. Tobisu, N.
Chatani, Acc. Chem. Res. 2015, 48, 1717–1726.
Keywords: Synthetic method • Oxidative addition • Nickel
intermediates • Josiphos ligands • Mechanism
[15] For a recent study on the reactions between chelating phosphines and
Ni(COD)
L. Rheingold, R. T. Vanderlinden, J. Louie, Organometallics 2018, 37,
259–3268.
2
, see: A. L. Clevenger, R. M. Stolley, N. D. Staudaher, N. Al, A.
3
[
16] See Supporting Information for details.
[
1]
2]
a) A. Ehrentraut, A. Zapf, M. Beller, Adv. Synth. Catal. 2002, 344, 209–
[
17] The presence of carbonyl moiety has been shown to possibly inhibit the
oxidative addition of aryl halides to Ni(0) species by leading to
thermodynamically stable carbonyl ligated nickel species, see: A. K.
Cooper, D. K. Leonard, S. Bajo, P. M. Burton, D. J. Nelson, Chem. Sci.
2
17; b) D. A. Culkin, J. F. Hartwig, Acc. Chem. Res. 2003, 36, 234–
45; c) F. Bellina, R. Rossi, Chem. Rev. 2010, 110, 1082–1146; d) C. C.
2
C. Johansson, T. J. Colacot, Angew. Chem. 2010, 122, 686–718;
Angew. Chem. Int. Ed. 2010, 49, 676–707; e) Y.-J. Hao, X.-S. Hu, Y.
Zhou, J. Zhou, J.-S. Yu, ACS Catal. 2020, 10, 955–993.
2020, 11, 1905–1911.
[18] While many Ni(bis-phosphine) species are unreactive in catalysis, a
2
[
For selected recent examples with aliphatic ketones, see: a) X.-Q. Hu,
D. Lichte, I. Rodstein, P. Weber, A.-K. Seitz, T. Scherpf, V. H. Gessner,
L. J. Gooßen, Org. Lett. 2019, 21, 7558–7562; b) T. M. Gøgsig, R. H.
Taaning, A. T. Lindhardt, T. Skrydstrup, Angew. Chem. 2012, 124,
recent comprehensive study has shown that depending on the steric
and electronic properties of the bis-phosphine ligands, the
2
corresponding Ni(bis-phosphine) complex may be susceptible to ligand
exchange (see ref 15). The steric bulk of the Josiphos ligand, combined
with the specific stereoelectronic properties imparted by the ferrocene
8
22–825; Angew. Chem. Int. Ed. 2012, 51, 798–801.
a) J. Schranck, J. Rotzler, Org. Process Res. Dev. 2015, 19, 1936–
943; b) A. M. Oertel, V. Ritleng, A. Busiah, L. F. Veiros, M. J. Chetcuti,
[
3]
4]
2
backbone could be destabilizing for (Josiphos) Ni and induces facile
1
displacement of one Josiphos ligand by chlorobenzene.
Organometallics 2011, 30, 6495–6498.
[
[
[
[
19] S. Ge, R. A. Green, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 1617–
[
a) K. D. Hesp, R. J. Lundgren, M. Stradiotto, J. Am. Chem. Soc. 2011,
1627.
133, 5194–5197; b) L. Ackermann, V. P. Mehta, Chem. Eur. J. 2012, 18,
20] S. Bajo, G. Laidlaw, A. R. Kennedy, S. Sproules, D. J. Nelson,
Organometallics 2017, 36, 1662–1672.
10230–10233; c) J. Schranck, A. Tlili, P. G. Alsabeh, H. Neumann, M.
Stradiotto, M. Beller, Chem. Eur. J. 2013, 19, 12624–12628; d) P. Li, B.
Lü, C. Fu, S. Ma, Adv. Synth. Catal. 2013, 355, 1255–1259; e) C.
Gäbler, M. Korb, D. Schaarschmidt, A. Hildebrandt, H. Lang, Adv.
Synth. Catal. 2014, 356, 2979–2983; f) P. M. MacQueen, A. J.
Chisholm, B. K. V. Hargreaves, M. Stradiotto, Chem. Eur. J. 2015, 21,
21] J. B. Diccianni, J. Katigbak, C. Hu, T. Diao, J. Am. Chem. Soc. 2019,
141, 1788–1796.
22] Enhanced stability of ortho-substituted aryl nickel complexes is believed
to originate from a combination of electronic and steric factors, see: J.
Chatt, B. L. Shaw, J. Chem. Soc.1960, 1718–1729.
5
This article is protected by copyright. All rights reserved.