An Efficient and Practical Protocol for Catalytic Hydrolysis of Nitriles
A. Greenberg, C. M. Breneman, J. F. Liebman), Wiley,
New York, 2000; c) I. Johansson, in: Kirk-Othmer En-
cyclopedia of Chemical Technology, Vol. 2. 5th edn.,
Wiley, New York, 2004, pp 442–463; d) S.-I. Murahashi,
H. Takaya, Acc. Chem. Res. 2000, 33, 225–233; e) V. Y.
Kukushkin, A. J. L. Pombeiro, Chem. Rev. 2002, 102,
1771–1802; f) V. Y. Kukushkin, A. J. L. Pombeiro,
Inorg. Chim. Acta 2005, 358, 1–21; g) P. K. Mascharak,
Coord. Chem. Rev. 2002, 225, 201–214; h) T. C. Harrop,
P. K. Mascharak, Acc. Chem. Res. 2004, 37, 253–260.
Scheme 1. Synthesis of oxindole by our Cu-catalyzed proto-
col.
[2] a) R. Opsahl, in: Encyclopedia of Chemical Technology,
Vol. 2, (Ed.: J. I. Kroschwitz), Wiely, New York, 1991,
pp 346–356; b) K. Ingvosersen, J. Kamphuis, in:
Enzyme Catalysis in Organic Synthesis, Vol. 1 (Eds.: K.
Drauz, H. Waldmann), VCH, Weinheim, 1995, pp 365–
392.
[3] Methoden der Organischen Chemie (Houben Weyl), 4th
edn. Vol. E5(2), Georg Thieme Verlag, Stuttgart, 1985,
pp 1024–1031.
[4] a) B. Schultz, in: Enzyme Catalysis in Organic Synthe-
sis, (Eds.: K. Drauz, H. Waldmann), VCH, Weinheim,
2002, p 699; b) K. Weissermel, H.-J. Arpe, Industrial
Organic Chemistry, 4th edn., VCH, Weinheim, 2003,
p 310.
[5] M. Kobayashi, T. Nagasawa, H. Yamada, Trends Bio-
technol. 1992, 10, 402–408.
the drug and polymer industry.[14] As show in
Scheme 1, oxindole could be prepared in a total yield
of 76% by a one-pot reaction with Cu4I
complex 1 as catalysts.
4ACHTUNGRTNE(NUNG H2O)4 and
In conclusion, an efficient copper-catalyzed proto-
col for the hydrolysis of nitriles to amides in water
under neutral condition has been disclosed. This ap-
proach represents an important complement to the
hydrolysis of nitriles and exhibits potential usage in
industry. We envision that the fuctionalization of ni-
trile-containing polymers may be realized using the
present hydrolysis strategy.
[6] a) J. Chin, J. H. Kim, Angew. Chem. 1990, 102, 580–
582; Angew. Chem. Int. Ed. Engl. 1990, 29, 523–525;
b) S.-I. Murahashi, S. Sasao, E. Saito, T. Naota, J. Org.
Chem. 1992, 57, 2521–2523; c) S.-I. Murahashi, S.
Sasao, E. Saito, T. Naota, Tetrahedron 1993, 49, 8805–
8826; d) J. H. Kim, J. Britten, J. Chin, J. Am. Chem.
Soc. 1993, 115, 3618–3622; e) T. Ghaffar, A. W. Parkins,
Tetrahedron Lett. 1995, 36, 8657–8660; f) C. S. Chin,
S. Y. Kim, K.-S. Joo, G. Won, D. Chong, Bull. Korean
Chem. Soc. 1999, 20, 535–538; g) M. C. K. Djoman,
A. N. Ajjou, Tetrahedron Lett. 2000, 41, 4845–4849;
h) T. Ghaffar, A. W. Parkins, J. Mol. Catal. A 2000, 160,
249–261; i) M. N. Kopylovich, V. Y. Kukushkin, M.
Haukka, J. J. R. Frafflsto da Silva, A. J. L. Pombeiro,
Inorg. Chem. 2002, 41, 4798–4804; j) K. L. Breno, M. D.
Pluth, D. R. Tyler, Organometallics 2003, 22, 1203–
1211; k) W. K. Fung, X. Huang, M. L. Man, S. M. Ng,
M. Y. Hung, Z. Lin, C. P. Lau, J. Am. Chem. Soc. 2003,
125, 11539–11544; l) H. Takaya, K. Yoshida, K. Isozaki,
H. Terai, S.-I. Murahashi, Angew. Chem. 2003, 115,
3424–3426; Angew. Chem. Int. Ed. 2003, 42, 3302–3304;
m) X. Jiang, A. J. Minnaard, B. L. Feringa, J. G. de V-
ries, J. Org. Chem. 2004, 69, 2327–2331; n) M. North,
A. W. Parkins, A. N. Shariff, Tetrahedron Lett. 2004, 45,
7625–7627; o) T. Oshiki, H. Yamashita, K. Sawada, M.
Utsunomiya, K. Takahashi, K. Takai, Organometallics
2005, 24, 6287–6290; p) H. B. Ammar, X. W. Miao, C.
Fischmeister, L. Toupet, P. H. Dixneuf, Organometallics
2010, 29, 4234–4238; q) V. Cadierno, J. Díez, J. Francos,
J. Gimeno, Chem. Eur. J. 2010, 16, 9808–9817; r) R. G.
lvarez, J. Díez, P. Crochet, V. Cadierno, Organometal-
lics 2010, 29, 3955–3965.
Experimental Section
General Procedure for the Catalytic Reaction
The corresponding nitrile (1 mmol), the copper catalyst
Cu4I4ACHTUNGTRENNUNG(H2O)4 (2.5 mol%), and water (5 mL) were placed in
a sealed tube and the reaction mixture was stirred at 1008C
for the indicated time (see Table 1 and Table 2). then the re-
action mixture was cooled to 58C. The crystalline product
appeared and was collected by simple filtration and dried
under vacuum to give analytically pure amide. To the filtrate
was added deionized water to 5 mL, and the mixture was
employed as the reusable catalytic system.
CCDC 842303 contains the supplementary crystallograph-
ic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre
Acknowledgements
We appreciate the Natural Science Foundation of China (No.
21072132), Sichuan Provincial Foundation (08ZQ026-041),
and Ministry of Education (NCET-10-0581) for financial
support and the Analytical & Testing Centre of Sichuan Uni-
versity for NMR analysis.
References
[7] a) J. Akisanya, A. W. Parkins, J. W. Steed, Org. Process
Res. Dev. Org. Process Res. Dew. 1998, 2, 274–276;
b) X.-B. Jiang, A. J. Minnaard, B. L. Feringa, J. G. de V-
ries, J. Org. Chem. 2004, 69, 2327–2331.
[1] Books and reviews: a) The Chemistry of Amides, (Ed.:
J. Zabicky), Wiley-Interscience, New York, 1970;
b) The Amide Linkage: Structural Significance in
Chemistry, Biochemistry and Materials Science, (Eds.:
Adv. Synth. Catal. 2012, 354, 584 – 588
ꢂ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
587