R. Vanjari et al. / Tetrahedron Letters 54 (2013) 2553–2555
2555
Table 3
287; (c) Opsahl, R. In Encyclopaedia of Chemical Technology; Kroschwitz, J. I., Ed.;
Wiley: New York, 1991; 2, pp 346–356; (d)The Chemistry of Amides; Zabicky, J.,
Ed.; Wiley-Interscience: New York, 1970.
1,4-Dioxane mediated formylation of aminesa
O
O
2. (a) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606–631; (b) Allen, C. L.;
Chhatwal, A. R.; Williams, J. M. J. Chem. Commun. 2012, 666–668; (c) Arnold, K.;
Davies, B.; Herault, D.; Whiting, A. Angew. Chem., Int. Ed. 2008, 47, 2673–2676;
(d) Lundberg, H.; Tinnis, F.; Adolfsson, H. Chem. Eur. J. 2012, 18, 3822–3826; (e)
Srinivas, K. V. N. S.; Das, B. J. Org. Chem. 2003, 68, 1165–1167; (f)
Gnanaprakasam, B.; Milstein, D. J. Am. Chem. Soc. 2011, 133, 1682–1685.
3. (a) Yoo, W.-J.; Li, C.-J. J. Am. Chem. Soc. 2006, 128, 13064–13065; (b) Seo, S.-Y.;
Marks, T. J. Org. Lett. 2008, 10, 317–319; (c) Xu, B.; Huang, L.; Yang, Z.; Yao, Y.;
Zhang, Y.; Shen, Q. Organometallics 2011, 30, 3588–3595; (d) Suto, Y.;
Yamagiwa, N.; Torisawa, Y. Tetrahedron Lett. 2008, 49, 5732–5735; (e) Tillack,
A.; Rudloff, I.; Beller, M. Eur. J. Org. Chem. 2001, 523–528; (f) Cadoni, R.;
Porcheddu, A.; Giacomelli, G.; De Luca, L. Org. Lett. 2012, 14, 5014–5017.
4. (a) Lin, Y.-S.; Alper, H. Angew. Chem., Int. Ed. 2001, 40, 779–781; (b)
Namayakkara, P.; Alper, H. Chem. Commun. 2003, 2384–2385; (c) Wu, X.-F.;
Neumann, H.; Beller, M. Chem. Eur. J. 2012, 18, 419–422; (d) Wu, X.-F.;
Schranck, J.; Neumann, H.; Beller, M. ChemCatChem 2012, 4, 69–71.
5. Uenoyama, Y.; Fukuyama, T.; Nobuta, O.; Matsubara, H.; Ryu, I. Angew. Chem.,
Int. Ed. 2005, 44, 1075–1078.
6. (a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317, 790–792; (b)
Zweifel, T.; Naubron, J. V.; Grutzmacher, H. Angew. Chem., Int. Ed. 2009, 48, 559–
563; (c) Zhang, Y.; Chen, C.; Ghosh, S. C.; Li, Y.; Hong, S. H. Organometallics 2010,
29, 1374–1378; (d) Cheng, C.; Hong, S. H. Org. Biomol. Chem. 2011, 9, 20–26; (e)
Kegnaes, S.; Mielby, J.; Mentzel, U. V.; Jensen, T.; Fristrup, P.; Riisager, A. Chem.
Commun. 2008, 2427–2429; (f) Ghosh, S. C.; Muthaiah, S.; Zhang, Y.; Xu, X.;
Homg, S. H. Adv. Synth. Catal. 2009, 351, 2643–2649.
7. Xiao, F.; Liu, Y.; Tang, C.; Deng, G.-J. Org. Lett. 2012, 14, 984–987.
8. Shen, B.; Makley, D. M.; Johnston, J. N. Nature 2010, 465, 1027–1032.
9. (a) Kim, J.; Park, W.; Ryoo, R. ACS Catal. 2011, 1, 337–341; (b) Owston, N. A.;
Parker, A. J.; Williams, J. M. J. Org. Lett. 2007, 9, 3599–3601.
R
MW, 1,4-dioxane
R
H2N
H
NH2
NH3
H
N
H
Entry Amine
Product
Time
(min)
Yield
(%)
H
1
2
30
85
O
O
NH2
NH2
N
Cl
Cl
30
70
H
N
O
O
H
N
3
30
30
87
86
O
O
NH2
O
H
N
4
NH2
NH2
O
5
30
30
80
82
N
H
O
NH2
O
6
N
O
O
H
10. Sawant, D. N.; Wagh, Y. S.; Bhatte, K. D.; Bhanage, B. M. J. Org. Chem. 2011, 76,
5489–5494.
NH2
Cl
11. (a) Zhang, M.; Imm, S.; Bähn, S.; Neubert, L.; Neumann, H.; Beller, M. Angew.
Chem., Int. Ed. 2012, 51, 3905–3909; (b) Allen, C. L.; Atkinson, B. N.; Williams, J.
M. J. Angew. Chem. Int. Ed. 2012, 51, 1383–1386; (c) Tamura, M.; Tonomura, T.;
Shimizu, K.-I.; Satsuma, A. Green Chem. 2012, 14, 717–724; (d) Nguyen, T. B.;
Sorres, J.; Tran, M. Q.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2012, 14, 3202–
3205; (e) Starkov, P.; Sheppard, T. D. Org. Biomol. Chem. 2011, 9, 1320–1323.
12. Vanjari, R.; Allam, B. K.; Singh, K. N. RSC Adv. 2013, 3, 1691–1694.
13. (a) Guntreddi, T.; Allam, B. K.; Singh, K. N. Synlett 2012, 2635–2638; (b) Allam,
B. K.; Singh, K. N. Tetrahedron Lett. 2011, 52, 5851–5854; (c) Allam, B. K.; Singh,
K. N. Synthesis 2011, 1125–1131; (d) Raghuvanshi, D. S.; Singh, K. N. Synlett
2011, 373–377; (e) Gupta, A. K.; Rao, G. T.; Singh, K. N. Tetrahedron Lett. 2012,
53, 2218–2221; (f) Kumari, K.; Raghuvanshi, D. S.; Jouikov, V.; Singh, K. N.
Tetrahedron Lett. 2012, 53, 1130–1133; (g) Raghuvanshi, D. S.; Singh, K. N.
Tetrahedron Lett. 2011, 52, 5702–5705; (h) Raghuvanshi, D. S.; Gupta, A. K.;
Singh, K. N. Org. Lett. 2012, 14, 4326–4329; (i) Singh, R.; Allam, B. K.;
Raghuvanshi, D. S.; Singh, K. N. Tetrahedron 2013, 69, 1038–1042; (j) Kumari,
K.; Raghuvanshi, D. S.; Singh, K. N. Tetrahedron 2013, 69, 82–88.
7
30
30
30
81
69
79
Cl
N
O
H
NH2
O
O
8
N
H
O
OH
HO
9
N
H
H2N
O
NH2
10
11
30
30
30
74
70
78
N
H
O
H
N
14. (a) Baba, H.; Suzuki, S. J. Chem. Phys. 1961, 35, 1118–1127; (b) Searles, S.;
Tamres, M. J. Am. Chem. Soc. 1951, 73, 3704–3706.
15. General experimental: Microwave reactions were performed using an Anton
Paar Monowave 300 mono-mode microwave reactor with a sealed 10-mL vial
containing teflon-coated magnetic stir bar. The microwave system contains a
single magnetron that delivers up to 850 W installed microwave power in an
unpulsed mode over the full power range. The sophisticated software prevents
thermal overshoots and the design of the microwave applicator provides
utmost field density, which allows efficient heating, even of low-absorbing
solvents at any scale. A precisely adjusted IR sensor reflects the internal
reaction temperature up to 300 °C. Pressure control up to 30 bars is provided
by a non-invasive hydraulic piston embedded in the swiveling cover. For
cooling, the cavity is flushed with compressed air automatically after the
programed experiment has been processed.
N
O
O
N
12
NH2
N
N
H
a
Reaction conditions: amine (1 mmol), formamide (1 mmol), 1,4-dioxane (2 ml),
Anton Paar Monowave. Yield refers to separated yield after column
chromatography.
16. General procedure for the 1,4-dioxane mediated transamidation of amides
with an amine under microwave. An oven-dried 10-mL microwave reaction
Acknowledgements
vial containing
carboxamide (1 mmol), amine (1 mmol), and dioxane (2 ml) (undried). The
vessel was sealed with plastic microwave septum, stirred at room
a Teflon-coated magnetic stir bar was charged with
a
We are thankful to the Council of Scientific and Industrial Re-
search (CSIR), New Delhi for providing financial assistance.
temperature for 5 min and then placed into the MW cavity for a specified
temperature and time. After the completion of reaction (TLC), the mixture was
cooled to room temperature; distilled water (10 mL) was added to it and then
extracted with ethyl acetate (3 Â 10 mL). The combined organic phase was
dried over anhydrous Na2SO4, filtered and then concentrated using a rotary
vacuum evaporator. The crude product was purified by column
chromatography using a mixture of ethyl acetate/n-hexane (10–20% of ethyl
acetate depending upon the product) as an eluent.
References and notes
1. (a) Mabermann, C. E. In Encyclopaedia of Chemical Technology; Kroschwitz, J. I.,
Ed.; Wiley: New York, 1991; 1, pp 251–266; (b) Lipp, D. In Encyclopaedia of
Chemical Technology; Kroschwitz, J. I., Ed.; Wiley: New York, 1991; 1, pp 266–