Parvatkar et al.
JOCNote
TABLE 3. Synthesis of Different Indoloquinolines Using I2 as a Catalyst
b,c). The reaction with m-bromo-aniline gave 3-bromo-indolo-
[2,3-b]quinoline in 44% yield (entry g). The reaction was also
studied with amino heterocycle 3-amino pyridine to obtain the
corresponding product in 29% yield (entry h).
The common route among the reported8-19 methods for
the synthesis of 6H-indolo[2,3-b]quinoline involves building
of an indole ring on a quinoline precursor, while the present
route describes the construction of a quinoline ring on an
indole precursor.
In conclusion, we have developed a new one-pot method
for the assembly of substituted indoloquinolines by sequen-
tial imination, nucleophilic addition, and annulation cata-
lyzed by iodine. Though the yields are moderate, this method
is easy and short, which makes it attractive.
Experimental Section
General. Melting points are uncorrected. 1H NMR (300 MHz)
and 13C NMR (75 MHz) spectra were recorded in DMSO-d6.
TMS was used as an internal reference. Chromatographic puri-
fication was conducted by column chromatography using neutral
alumina.
General Procedure for the Synthesis of Different Indoloquino-
lines. Indole-3-carboxyaldehyde (8) (3.46 mmol), aryl amines
(7a-h) (6.92 mmol) and iodine (0.35 mmol) was refluxed in
diphenyl ether (20 mL) for 12 h. After cooling, the reaction
mixture was chromatographed on alumina and diphenyl ether
was removed using hexanes as an eluent. Excess aryl amines
(except 3-amino-pyridine) were eluted using 5% ethyl acetate in
hexanes. Further elution with 20% ethyl acetate in hexanes
afforded the indoloquinolines (4a-h).
6H-Indolo[2,3-b]quinoline (4a). Yield 45% (0.3394 g); yellow
solid; mp >300 °C; Lit.15 342-346 °C. Spectral data are
identical with those reported.5,14,15
8H-Indolo[2,3-b]benzo[h]quinoline (4b). Yield 48% (0.4450 g);
gray solid; mp 264-268 °C. IR (KBr) 3348, 3053, 1609, 1491,
1462, 1385, 1364, 1258, 1234, 1147, 1105, 1018, 899, 812, 797,
746, 685 cm-1; 1H NMR (300 MHz, DMSO-d6) δ 7.31 (m, 1H),
7.57 (m, 2H), 7.74 (m, 2H), 7.81 (d, 1H, J = 9 Hz), 8.02 (m, 2H),
8.31 (d, 1H, J = 7.5 Hz), 9.11 (s, 1H), 9.26 (d, 1H, J = 9.0 Hz),
12.01 (s, 1H, NH); 13C NMR (75 MHz, DMSO-d6) δ 111.6,
117.4, 120.2, 120.8, 121.2, 122.1, 123.9, 124.4, 126.7, 127.2, 128.2
(3 ꢀ C), 128.4, 131.0, 133.7, 141.2, 144.4, 152.4; HRMS m/z
[M þ H]þ 269.1070 (calcd for C19H13N2, 269.1079).
8H-Indolo[2,3-b]benzo[f]quinoline (4c). Yield 53% (0.4914 g);
gray solid; mp >300 °C. IR (KBr) 3400, 3152, 1614, 1519, 1445,
1398, 815, 740 cm-1; 1H NMR (300 MHz, DMSO-d6) δ 7.32 (m,
1H), 7.57 (s, 2H), 7.64 (m, 1H), 7.78 (dd, 1H, J = 6.9 Hz, 7.5 Hz),
7.94 (d, 1H, J = 9 Hz), 8.06 (dd, 2H, J = 8.4 Hz, 9 Hz), 8.43 (d,
1H, J = 7.2 Hz), 9.03 (d, 1H, J = 8.4 Hz), 10.03 (s, 1H), 11.87 (s,
1H, NH); 13C NMR (75 MHz, DMSO-d6) δ 111.6, 117.2, 119.9,
120.2, 121.1, 122.3, 123.0, 123.8, 126.4, 127.5, 127.8, 128.2,
129.0, 130.3, 130.4, 131.0, 141.3, 146.4, 152.8; HRMS m/z
[M þ H]þ 269.1070 (calcd for C19H13N2, 269.1079).
aYield of the isolated products.
The potential biological activities of these indoloquinolines
prompted us to check the feasibility of making the library of
such compounds (Table 3). As methyl-substituted indolo[2,3-b]-
quinolines have shown promising anticancer activity,8-10
we prepared 2-, 3-, and 4-methyl substituted indolo[2,3-b]-
quinolines from corresponding toluidines in 38-41% yield
(entries d-f). Next, we tried the reaction with naphthylamines
(R and β), to get the corresponding annulated pentacyclic
benzo-indolo[2,3-b]quinolines in 48 and 53% yield (entries
(11) Dhanabal, T.; Sangeetha, R.; Mohan, P. S. Tetrahedron 2006, 62,
6258–6263.
(12) Patricia, V.-L.; Alajarin, R.; Alvarez-Builla, J.; Vaquero, J. J. Org.
Lett. 2006, 8, 415–418.
(8) Jonckers, T. H. M.; van Miert, S.; Cimanga, K.; Bailly, C.; Colson, P.;
De Pauw-Gillet, M.-C.; van den Heuvel, H.; Claeys, M.; Lemiere, F.;
Esmans, E. L.; Rozenski, J.; Quirijnen, L.; Maes, L.; Dommisse, R.; Lemiere,
G. L. F.; Vlietinck, A.; Pieters, L. J. Med. Chem. 2002, 45, 3497–3508.
(9) Peczynska-Czoch, W.; Pognan, F.; Kaczmarek, L.; Boratynski, J.
J. Med. Chem. 1994, 37, 3503–3510.
(10) Joanna, G.; Wojciech, L.; Bogdan, Z.; Lukasz, K.; Aleksandra,
B.-P.; Danuta, D.; Joanna, W.; Adam, O.; Magdalena, S.; Anna, J.; Anna,
J.; Arkadiusz, K.; Wanda, P.-C. Anticancer Res. 2005, 25, 2857–2868.
(13) Jonckers, T. H. M.; Maes, B. U. W.; Lemiere, G. L. F.; Rombouts,
G.; Pieters, L.; Haemers, A.; Dommisse, R. A. Synlett 2003, 615–618.
(14) Shi, C.; Zhang, Q.; Wang, K. K. J. Org. Chem. 1999, 64, 925–932.
(15) Molina, P.; Fresneda, P. M.; Delgado, S. Synthesis 1999, 326–329.
(16) Alajarin, M.; Molina, P.; Vidal, A. J. Nat. Prod. 1997, 60, 747–748.
(17) Timari, G.; Soos, T.; Hajos, G. Synlett 1997, 1067–1068.
(18) Schulte, K. E.; Reisch, J.; Stoess, U. Arch. Pharm. 1972, 305, 523–
533.
(19) Engqvist, R.; Bergnan, J. Org. Prep. Proced. Int. 2004, 36, 386–390.
J. Org. Chem. Vol. 74, No. 21, 2009 8371