10.1002/ejoc.201701111
European Journal of Organic Chemistry
COMMUNICATION
Table 4. IAC cyclisation to synthesise tetracyclic heterocycles using the 3D
printed polypropylene reactor.
2755; d) P. J. Kitson, S. Glatzel, W. Chen, C. -G. Lin, Y. -F. Song,
L. Cronin, Nature Protocols, 2016, 11, 920-936.
[3]
[4]
a) F. Lederle, F. Meyer, C. Kaldun, J. C. Namyslo and E. G. Hübner,
New J. Chem., 2017, 41, 1925-1932; b) F. Lederle, C. Kaldun, J. C.
Namyslo and E. G. Hübner, Helv. Chim. Acta, 2016, 99, 255–266;
c) F. Lederle, F. Meyer, G.-P. Brunotte, C. Kaldun and E. G. Hübner,
Prog. Addit. Manuf., 2016, 1, 3–7; d) E. G. Gordeev, E. S.
Degtyareva, V. P. Ananikov, Russ. Chem. Bull.Int. Ed. 2016, 65,
1637-1643.
a) P. J. Kitson, S. Glatzel, L. Cronin, Beilstein J. Org. Chem. 2016,
12, 2776-2783; b) R. D. Johnson, Nature Chemistry, 2012, 4, 338-
339; c) I. D. Williams, Nature Chemistry, 2012, 4, 953-954; d) P. J.
Kitson, M. D. Symes, V. Dragone, L. Cronin, Chem. Sci. 2013, 4,
30989-3103; e) V. Dragone, V. Sans, M. H. Rosnes, P. J. Kitson, L.
Cronin, Beilstein J. Org. Chem. 2013, 9, 951-959; f) P. J. Kitson, M.
H. Rosnes, V. Sans, L. Cronin, Lab Chip 2012, 12, 3267-3271; g)
M. D. Symes, P. J. Kitson, JU. Yan, C. J. Richmond, G. J. T. Cooper,
R. W. Bowman, T. Vilbrandt, L. Cronin, Nature Chemistry, 2012, 4,
349-354; h) P. J. Kitson, R. J. Marshall, D. Long, R. S. Forgan, L.
Cronin, Angew. Chem. Int. Ed. 2014, 53, 12723-12728.
Entry
Cyclisation
precursor
Product
Yield
[%]
1
45
2
54
[5]
a) A. J. Capel, A. Wright, M. J. Harding, G. W. Weaver, Y. Li, R. A.
Harris, S. Edmondson, R. D. Goodridge, S. D. R. Christie, Beilstein
J. Org. Chem. 2017, 13, 111-119; b) A. J. Capel, S. Edmondson, S.
D. R. Christie, R. D. Goodridge, R. J. Bibb, M. Thurstans, Lab Chip,
2013, 13, 4583-4590; c) G. Scotti, S. M. E. Nilsson, M. Haapala, P.
Pöhö, G. B. Gennäs, J. Yli-Kauhaluoma, T. Kotiaho, React. Chem.
Eng. 2017, advance article; d) D. E. Fitzpatrick, C. Battilocchio, S.
V. Ley, ACS Cent. Sci. 2016, 2, 131-138; e) N. Bhattacharjee, A.
Urrios, S. Kang, A. Folch, Lab Chip 2016, 16, 1720-1742.
a) P. K. Yuen, Lab Chip 2016, 16, 3700-3707; b) V. Sans, L. Porwol,
V. Dragone, L. Cronin, Chem. Sci. 2015, 6, 1258-1264; c) J. S.
Mathieson, M. H. Rosnes, V. Sans, P. J. Kitson, L. Cronin, Beilstein
J. Nanotechnol. 2013, 4, 285-291; d) S. Rossi, R. Porta, D. Brenna,
A. Puglisi, M. Benaglia, Angew. Chem. Int. Ed. 2017, 56, 4290-4294.
R. Porta, M. Benaglia, A. Puglisi, Org. Process Res. Dev. 2016, 20,
2-25.
We have previously demonstrated that this Lewis acid
mediated domino cyclisation process, which facilitates the
simultaneous formation of the B and C ring of the erythrina core
43 leads to the formation of a single diasteroisomer of the product
44.19 Pleasingly, upon cyclisation, the tetracyclic products 44 and
46 were also obtained as single diasteroisomers in excellent
yields which were comparable to reactions carried out in the
microwave.19 As such they represent a facile approach to the
scalable synthesis of complex heterocycles using the 3D printed
polypropylene reactors.
[6]
[7]
[8]
[9]
a) J. F. Bunnett, R. E. Zahler, Chem. Rev. 1951, 49, 273-412; b) J.
F. Bunnett, J. Chem. Educ. 1974, 51, 312−315.
a) F. J. B. Mendonca, L. Scotti, H. Ishiki, S. P. S. Botelho, M. S. da
Silva, M. T. Scotti, Mini Rev. Med. Chem. 2015, 15, 630-647; b) Eli
Lilly and Company; Lilly Industries Limited, 1997, US5605897.
A. Z. Bialvaei, M. Rahbar, M. Yousefi, M. Asgharzadeh, H. S. Kafil,
J. Antimicrob. Chemother. 2017, 72, 354-364; b) Glaxo Group
Limited, 2005, WO2005/103042.
In conclusion, we have designed, developed and 3D printed
a low-cost custom-made polypropylene column reactor that was
fitted in an existing FlowSyn continuous flow reactor system. We
demonstrated that it is resistant to solvents such as DMF and
dichloroethane and that it is capable of being used in SNAr
reactions as well as to access substituted bicyclic heterocycles
and complex tetracycles related to natural products. As such, it
represents an excellent demonstration of the potential of
developing and using bespoke low-cost 3D printed reactors in
synthetic chemistry. Further studies on additional reactors are
currently under way in our laboratory and will be reported in due
course.
[10]
[11]
[12]
M. V. N. De Souza, T. R. A. Vasconcelos, M. V. d. Almedia, S. H.
Cardosa, Curr. Med. Chem. 2006, 13, 455-463.
a) W. Pao, J. Chmielecki, Nat. Rev. Cancer 2010, 10, 760−774; b)
M. Maemondo, A. Inoue, K. Kobayashi, S. Sugawara, S. Oizumi, H.
Isobe, A. Gemma, M. Harada, H. Yoshizawa, I. Kinoshita, Y. Fujita,
S. Okinaga, H. Hirano, K. Yoshimori, T. Harada, T. Ogura, M. Ando,
H. Miyazawa, T. Tanaka, Y. Saijo, K. Hagiwara, S. Morita, T. Nukiwa,
N. Engl. J. Med. 2010, 362, 2380− 2388.
a) A. J. Clark, Chem. Soc. Rev. 2002, 31, 1-11; b) D. O'Hagan, Nat.
Prod. Rep. 2000, 17, 435-446; c) M. d’Ischia, A. Napolitano and A.
Pezzella, in Comprehensive Heterocyclic Chemistry III, eds. A. R.
Katritzky, C. A. Ramsden, E. F. V. Scriven and R. J. K. Taylor,
Elsevier, Oxford, 2008, 353-388.
a) U. P. De Albuquerque, P. M. De Medeiros, A. L. S. De Almeida,
J. M. Monteiro, E. M. D. F.L. Neto, J. G. De Melo, J. P. Dos Santos,
J. Ethnopharm. 2007, 114, 325-354; b) Y. Tsuda, T. Sano in The
Alkaloids, Vol 48 (Ed.: G. A. Cordell), Academic Press, New York,
1996, 249-337.
a) B. Deng, L. Ye, H. Yin, Y. Liu, S. Hu and B. Li, J. Chromatogr. B
2011, 879, 927-932; b) X. Li, H.-Y. Yu, Z.-Y. Wang, H.-F. Pi, P.
Zhang and H.-L. Ruan, Fitoterapia 2013, 88, 82-90; c) W.-M. Wu,
Y.-Y. Zhu, H.-R. Li, H.-Y. Yu, P. Zhang, H.-F. Pi and H.-L. Ruan, J.
Asian Nat. Prod. Res. 2013, 16, 192-199; d) S.-D. Huang, Y. Zhang,
H.-P. He, S.-F. Li, G.-H. Tang, D.-Z. Chen, M.-M. Cao, Y.-T. Di and
X.-J. Hao, Chin. J. Nat. Med. 2013, 11, 406-410.
[13]
[14]
[15]
Acknowledgements
This work was gratefully supported by an FNS visiting
postdoctoral fellowship grant to A.M. [P2GEP2_151840] and an
EPSRC first grant to S.T.H [EP/J01544X/1]. We thank the EPSRC
UK National Mass Spectrometry facility and Swansea University
for spectroscopic services.
[16]
15 May 2017.
Keywords:
3D-printing,
continuous-flow,
reactionware,
[17]
[18]
a) N. S. Wilson, C. R. Sarko, G. P. Roth, Org. Proc. Res. Dev. 2004,
8, 535-538; b) J. C. Bressi, R. D. Jong, Y. Wu, A. J. Jennings, J. W.
Brown, S. O'Connell, L. W. Tari, R. J. Skene, P. Vu, M. Navre, X.
Cao, A. R. Gangloff, Bioorg. Med. Chem. Lett. 2010, 20, 3183-3141;
c) N. A. Isley, R. T. H. Lindstadt, S. M. Kelly, F. Gallou, B. H.
Lipshutz, Org. Lett. 2015, 17, 4734-4737.
polypropylene, heterocycles.
[1]
[2]
a) C. W. Hull, 1986, US4575330; b) B. C. Gross, J. L. Erkal, S. Y.
Lockwood, C. Chen, D. M. Spence, Anal. Chem. 2014, 86, 3240-
3253.
a) Y. Zhang, S. Ge, J. Yu, Trends Anal. Chem. 2016, 85, 166-180;
b) G. W. Bishop, J. E. Satterwhite, S. Bhakta, K. Kadimisetty, K. M.
Gillete, E. Chen and J. F. Rusling, Anal. Chem., 2015, 87, 5437–
5443; c) A. Ambrosi, M. Pumera Chem. Soc. Rev. 2016, 45, 2740-
[19]
A. Monaco, A. E. Aliev and S. T. Hilton, Chem. Eur. J. 2015, 21,
13909–13912.
This article is protected by copyright. All rights reserved.