ChemComm
Communication
Table 1 Effect of confinement in nanotubes on the regioselective halogenation
of N-phenylacetamide
Product ratio/%
Carbon nanotube
None
Halogenation agent Para
Ortho
1
2
3
4
5
6
7
PyCl2Bra
68
69
97
70
69
15
42
32
31
3
30
31
85
58
HiPCO SWNT (closed) PyCl2Br
Fig. 4 Schematic representation of the bromination reaction mechanism in a
HiPCO SWNT
CoMoCAT SWNT
AD SWNT
None
HiPCO SWNT
PyCl2Br
PyCl2Br
PyCl2Br
SWNT showing the formation of an intermediate with a large dipole moment
which is stabilised by
a highly polarisable nanoreactor, thus lowering the
b
Cl2
activation barrier and accelerating the reaction in nanotubes.
Cl2
a
Standard conditions: N-phenylacetamide (1.0 eq.), PyCl2Br (0.6 eq.
1.5 mmol dmÀ3), H2O, RT, 24 h. Standard conditions: N-phenyl- molecules from solution,21,22 can be employed for carbon nano-
acetamide (1.0 eq.), Cl2 (1000-fold excess), H2O, RT, 90 min (S2, ESI†).
b
reactors. Furthermore the enhanced thermal and chemical stability
of the SWNT interior surface combined with the rich reactivity of the
SWNT outer surface23–25 open up opportunities for constructing
Similarly to the bromination, we have shown that selectivity of the
chlorination reaction19 increases from 15% of para-product in
solution (entry 6, Table 1) to 42% due to confinement inside HiPCO
bespoke recyclable nanoreactors26 tailored for chemical processes
leading to products unattainable by other means.2
SWNT (entry 7). Furthermore, conversion rates of N-phenylacetamide
halogenation reach 100% in the optimum cases thus suggesting
facile diffusion of products from nanoreactors.
Notes and references
Para-selectivity is expected to rise sharply as surface adsorbed N-
phenylacetamide excess is removed by the fractional distillation.
However, our measurements indicate a much more gradual increase
in para-selectivity (Fig. 3) suggesting that not all N-phenylacetamide
reactant molecules could possibly be encapsulated at any one time.
Surprisingly, the measured selectivity for the para-product is higher
than is expected from the calculated proportion of encapsulated
N-phenylacetamide molecules at the start of the reaction, already
reaching 97% when just a minority of reactant molecules are encap-
sulated (S3, ESI†). This observation suggests that the rate of the
confined reaction is significantly accelerated compared to that of
the bulk and reactant molecules are diffusing into the nanotube
during the reaction. The theoretical simulations of Halls and
Schlegel20 predicted that nanotube confinement would substantially
affect the Menshutkin SN2 reaction and showed that the highly
polarisable nanotube stabilised the charge separation in the transition
state which significantly lowered the activation energy and endo-
thermicity compared to the reaction in the gas phase. The aromatic
bromination reaction mechanism (Fig. 4) also forms an intermediate
with a large charge separation (i.e. high dipole moment) and it is
therefore reasonable to surmise that the highly polarisable nanotube
1 U. H. Brinker and J. L. Mieusset, in Molecular Encapsulation: Organic
Reactions in Constrained Systems, John Wiley & Sons, 2010.
2 A. N. Khlobystov, ACS Nano, 2011, 5, 9306.
3 (a) Z. J. Chen, Z. H. Guan, M. R. Li, Q. H. Yang and C. Li, Angew.
Chem., Int. Ed., 2011, 50, 4913; (b) Q. H. Yang, D. H. Han, H. Q. Yang
and C. Li, Chem.–Asian J., 2008, 3, 1214; (c) B. Li, S. Y. Bai,
X. F. Wang, M. M. Zhong, Q. H. Yang and C. Li, Angew. Chem., Int.
Ed., 2012, 51, 11517.
4 W. A. Solomonsz, G. A. Rance, M. Suyetin, A. La Torre,
E. Bichoutskaia and A. N. Khlobystov, Chem.–Eur. J., 2012, 18, 13180.
5 A. La Torre, M. D. Gimenez-Lopez, M. W. Fay, G. A. Rance,
W. A. Solomonsz, T. W. Chamberlain, P. D. Brown and
A. N. Khlobystov, ACS Nano, 2012, 6, 2000.
6 X. L. Pan and X. H. Bao, Acc. Chem. Res., 2011, 44, 553.
7 P. Serp and E. Castillejos, ChemCatChem, 2010, 2, 41.
8 M. Koshino, Y. Niimi, E. Nakamura, H. Kataura, T. Okazaki,
K. Suenaga and S. Iijima, Nat. Chem., 2010, 2, 117.
9 D. A. Britz, A. N. Khlobystov, K. Porfyrakis, A. Ardavan and G. A. D.
Briggs, Chem. Commun., 2005, 37.
10 A. Chuvilin, E. Bichoutskaia, M. C. Gimenez-Lopez, T. W.
Chamberlain, G. A. Rance, N. Kuganathan, J. Biskupek, U. Kaiser
and A. N. Khlobystov, Nat. Mater., 2011, 10, 687.
11 A. V. Talyzin, I. V. Anoshkin, A. V. Krasheninnikov, R. M. Nieminen,
A. G. Nasibulin, H. Jiang and E. I. Kauppinen, Nano Lett., 2011,
11, 4352.
12 E. Nakamura, M. Koshino, T. Saito, Y. Niimi, K. Suenaga and
Y. Matsuo, J. Am. Chem. Soc., 2011, 133, 14151.
13 H. A. Muathen, Synthesis, 2002, 169.
could stabilise this dipole, thus reducing activation energy barriers 14 P. G. Dumanski, C. J. Easton, S. F. Lincoln and J. S. Simpson, Aust. J.
Chem., 2003, 56, 1107.
15 P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund,
and accelerating the reaction rate for the para-product in nanotubes.
The acceleration of confined reactions may explain the greater than
D. T. Colbert, K. A. Smith and R. E. Smalley, Chem. Phys. Lett.,
expected selectivity towards the para-product even when not all
N-phenylacetamide molecules are initially encapsulated in SWNT.
In conclusion, single-walled carbon nanotubes have been demon-
1999, 313, 91.
16 E. Dujardin, T. W. Ebbesen, H. Hiura and K. Tanigaki, Science, 1994,
265, 1850.
17 K. Koga, G. T. Gao, H. Tanaka and X. C. Zeng, Nature, 2001, 412, 802.
strated as effective nanoreactors where nanoscale confinement 18 V. V. Chaban and O. V. Prezhdo, ACS Nano, 2011, 5, 5647.
ˆ
19 R. Chenevert and G. Ampleman, Can. J. Chem., 1987, 65, 307.
significantly improves the selectivity and kinetics of aromatic halo-
genation reactions. We have demonstrated that the size of the host-
nanotube cavity is of critical importance for effective control of
selectivity where a suitable nanotube diameter can be readily selected
to provide the optimum confinement for the reactants or products of
a particular chemical reaction. Since no specific interactions are
required to encapsulate reactants in SWNT other than ubiquitous
van der Waals forces, the strategies developed for molecular contain-
ers such as cryptophanes, which possess the ability to bind small
20 M. D. Halls and H. B. Schlegel, J. Phys. Chem. B, 2002, 106, 1921.
21 M. A. Little, J. Donkin, J. Fisher, M. A. Halcrow, J. Loder and
M. J. Hardie, Angew. Chem., Int. Ed., 2012, 51, 764.
22 M. A. Little, M. A. Halcrow and M. J. Hardie, Chem. Commun., 2013,
49, 1512.
23 S. A. Hodge, M. K. Bayazit, K. S. Coleman and M. S. P. Shaffer, Chem.
Soc. Rev., 2012, 41, 4409.
24 M. K. Bayazit and K. S. Coleman, Chem.–Asian J., 2012, 7, 2925.
25 A. Suri and K. S. Coleman, J. Nanosci. Nanotechnol., 2012, 12, 2929.
26 G. A. Rance, W. A. Solomonsz and A. N. Khlobystov, Chem. Commun.,
2013, 49, 1067.
c
5588 Chem. Commun., 2013, 49, 5586--5588
This journal is The Royal Society of Chemistry 2013