10.1002/chem.201901640
Chemistry - A European Journal
DOI: 10.1002/chem.201xxxxxx
Modeling
[7]
D. Reker, A. M. Perna, T. Rodrigues, P. Schneider, M.Reutlinger, B.
Mönch, A. Koeberle, C. Lamers, M. Gabler, H. Steinmetz, et al. Nat.
Chem. 2014, 6, 1072.
Molecular Operating System (MOE, version 2015.10, Chemical Computing
Group)[54] was used for all in silico operations. Models of protein-ligand
complexes between desoxycyclomarin C and both targets PfAp3Aase and ClpC1
NTD were generated based on the published crystal structures 5CS2 and 3WDC,
respectively, with closely related cyclomarin A as ligand. The unit cell of 5CS2
does not directly provide the shown binding mode of the cyclomarin scaffold to
the target and the crystal lattice had to be extended beyond the asymmetric unit
using the crystal builder function of MOE and unnecessary cyclomarin as well as
protein duplicates arising from this operation had to be removed. Then, the β-
hydroxy function on the tryptophan unit was removed and the epoxy motif was
replaced by a double bond. Subsequently, the built-in QuickPrep function with
standard parameters and AMBER10:EHT forcefield was applied to yield the
complex structure of desoxycyclomarin C bound to PfAp3Aase. In case of 3WDC,
ligand modifications were applied directly after loading the coordinates of 3WDC
into the software. These operations comprised removal of the β-hydroxy function
on the tryptophan core as well as removal of the linkage between Met1 and the
epoxide-bearing moiety. Then, the double bond feature was installed and the
superfluous oxygen was deleted without changing positions of the carbon atoms.
Finally, the built-in QuickPrep function with standard parameters and
AMBER10:EHT forcefield was applied to yield the complex structure of
desoxycyclomarin C bound to ClpC1 NTD.
[8]
[9]
T. Hoffmann, D. Krug, N. Bozkurt, S. Duddela, R. Jansen, R.Garcia, K.
Gerth, H. Steinmetz, R. Müller, Nat. Commun. 2018, 9, 803.
D. Krug, R. Müller, Nat. Prod. Rep. 2014, 31, 768–783.
[10] J. Szychowski, J.-F. Truchon, Y. L. Bennani, J. Med. Chem. 2014, 57,
9292–9308.
[11] E. K. Schmitt, D. Hoepfner, P. Krastel, J. Ind. Microbiol. Biotechnol.
2016, 43, 249–260.
[12] L. Laraia, H. Waldmann, Drug Discov. Today Technol. 2017, 23, 75–82.
[13] T. Dang, R. D. Süssmuth, Acc. Chem. Res. 2017, 50, 1566–1576.
[14] J. Herrmann, J. Rybniker, R. Müller, Curr. Opin. Biotechnol. 2017, 48,
94–101.
[15] A. Kling, P. Lukat, D. V. Almeida, A. Bauer, E. Fontaine, S.Sordello, N.
Zaburannyi, J. Herrmann, S. C. Wenzel, C. König, et al. Science 2015,
348, 1106–1112.
[16] M. K. Renner, Y.-C. Shen, X.-C. Cheng, P. R. Jensen, W.Frankmoelle,
C. A. Kauffman, W. Fenical, E. Lobkovsky, J. Clardy, J. Am. Chem. Soc.
1999, 121, 11273–11276.
P. falciparum growth inhibition assay
[17] E. K. Schmitt, M. Riwanto, V. Sambandamurthy, S. Roggo, C.Miault, C.
Zwingelstein, P. Krastel, C. Noble, D. Beer, S. P. S. Rao, et al. Angew.
Chemie - Int. Ed. 2011, 50, 5889–5891; Angew. Chem. 2011, 123,
6011–6013.
In vitro activity of desoxycyclomarines was tested against the asexual erythrocytic
stages of two P. falciparum laboratory strains 3D7 (chloroquine sensitive) and
Dd2 (chloroquine resistant) that were kept in continuous culture. Activity was
assessed by a histidine-rich protein 2 (HRP2) ELISA as described before.[55,56] As
control chloroquine diphosphate (Sigma) was run in parallel. Briefly: A threefold
dilution of the respective compound was added to a 96-well plate before
synchronized parasites at ring stage (parasitemia 0.05%) were added in
complete culture medium at a hematocrit of 1.5%. After three days of incubation
at 37 °C, 5% CO2 and 5% oxygen, plates were freeze thawed before analyzed by
HRP2-ELISA. All compounds were tested in duplicate in at least two independent
experiments. The 50% inhibitory concentration (IC) was determined by analyzing
the nonlinear regression of log concentration-response curves using the drc-
package v0.9.0 of R v3.2.2.[57]
[18] D. Vasudevan, S. P. S. Rao, C. G. Noble, J. Biol. Chem. 2013, 288,
30883–30891.
[19] K. Weinhäupl, M. Brennich, U. Kazmaier, J. Lelievre, L. Ballell, A.
Goldberg, P. Schanda, H.Fraga, J. Biol. Chem. 2018, 293, 8379–8393.
[20] N. Bürstner, S. Roggo, N. Ostermann, J. Blank, C. Delmas, F. Freuler, B.
Gerhartz, A. Hinniger, D. Hoepfner, B. Liechty, et al. ChemBioChem
2015, 16, 2433–2436.
[21] A. Kiefer, U. Kazmaier, Synthesis 2019, 51, 107–121.
[22] S. J. Wen, T. S. Hu, Z. J. Yao, Tetrahedron 2005, 61, 4931–4938.
[23] S. J. Wen, Z. J. Yao, Org. Lett. 2004, 6, 2721–2724.
Resazurin reduction microtiter assay (REMA).
To determine anti-mycobacterial activity of derivatives REMA assays were
performed as described recently.[58] In brief, M. tuberculosis Erdman (OD600 of
0.0001) was grown in Middlebrook 7H9 broth supplemented with 10% ADC and
0.05% tween 80 in microtiter plates containing serially diluted compounds. After
7 days of incubation, viable bacteria were quantified after addition of resazurin at
a final volume of 10% (0.025% w/v) and a 24-hour incubation period (37 °C)
followed by measurement of fluorescence (excitation at 570ꢀnm and emission at
590ꢀnm).
[24] P. Barbie, U. Kazmaier, Org. Lett. 2016, 18, 204–207.
[25] P. Barbie, U. Kazmaier, Org. Biomol. Chem. 2016, 14, 6036–6054.
[26] P. Barbie, U. Kazmaier, Org. Biomol. Chem. 2016, 14, 6055–6064.
[27] A. Kiefer, U. Kazmaier. Org. Biomol. Chem. 2019, 17, 88–102.
[28] a) L. Karmann, K. Schultz, J. Herrmann, R. Müller, U. Kazmaier, Angew.
Chemie Int. Ed. 2015, 54, 4502–4507; Angew. Chem. 2015, 127, 4585–
4590. b) S. Kappler, L. Karmann, C. Prudel, J. Herrmann, G. Caddeu, R.
Müller, A. Vollmar, S. Zahler, U. Kazmaier, Eur. J. Org. Chem. 2018,
6952–6965.
Acknowledgements
[29] a) D. Becker, U. Kazmaier, Eur. J. Org. Chem. 2015, 2591–2602. b) D.
Becker, U. Kazmaier, Eur. J. Org. Chem. 2015, 19, 4198–4213.
This work was supported by Saarland University.
[30] a) A. Ullrich, Y. Chai, D. Pistorius, Y. A. Elnakady, J. E. Herrmann, K. J.
Weissman, U. Kazmaier, R. Müller, Angew. Chem. Int. Ed. 2009, 47,
4422–4425; Angew. Chem. 2009, 121, 4486–4489. b) A. Ullrich, J.
Herrmann, R. Müller, U. Kazmaier, Eur. J. Org. Chem. 2009, 36, 6367–
6378. c) J. Hoffmann, J. Gorges, L. Junk, U. Kazmaier, Org. Biomol.
Chem. 2015, 13, 6010–6020.
Keywords: Cyclomarins • malaria • multiple-drug-resistance •
Mycobacterium tuberculosis • Plasmodium falciparum •
tuberculosis
[31] a) L. Junk, U. Kazmaier, Angew. Chem. Int. Ed. 2018, 57, 11432−11435;
Angew. Chem. 2018, 130, 11602−11606. b) L. Junk, U. Kazmaier, J.
Org. Chem. 2019, 84, 2489–2500.
[1]
[2]
J. Davies, D. Davies, Microbiol. Mol. Biol. Rev. 2010, 74, 417–433.
[32] J. M. A. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, L. J. V.Piddock,
K. M. G. O’Connell, J. T. Hodgkinson, H. F. Sore, M. Welch, G. P. C.
Salmond, D. R. Spring, Angew. Chemie Int. Ed. 2013, 52, 10706–10733;
Angew. Chemie 2013, 125, 10904–10932.
Nat. Rev. Microbiol. 2014, 13, 42.
[33] G. Cox, G. D. Wright, Int. J. Med. Microbiol. 2013, 303, 287–292.
[3]
M. F. Chellat, L. Raguž, R. Riedl, Angew. Chemie Int. Ed. 2016, 55,
6600–6626; Angew. Chemie 2016, 128, 6710–6738.
[34] M. Balganesh, N. Dinesh, S. Sharma, S. Kuruppath, A. V Nair, U.
Sharma, Antimicrob. Agents Chemother. 2012, 56, 2643–2651.
[4]
[5]
G. D. Wright, Nat. Prod. Rep. 2017, 34, 694–701.
[35] P. M. E. Hawkins, A. M. Giltrap, G. Nagalingam, W. J. Britton, R. J.
Payne, Org. Lett. 2018, 20, 1019–1022.
S. E. Rossiter, M. H. Fletcher, W. M. Wuest, Chem. Rev. 2017, 117,
12415–12474.
[36] J. Zhu, D. Ma, Angew. Chemie - Int. Ed. 2003, 42, 5348–5351;
Angew.Chem. 2003, 115 ,5506–5509.
[6]
D. J. Newman, G. M. Cragg, J. Nat. Prod. 2016, 79, 629–661.
[37] C. S. Dexter, R. F. W. Jackson, J. Elliott, J. Org. Chem. 1999, 64, 7579–
7585.
8
This article is protected by copyright. All rights reserved.