10.1002/chem.201704056
Chemistry - A European Journal
COMMUNICATION
Soc. 2007, 129, 11904–11905; d) S. H. Cho, S. J. Hwang, S. Chang, J.
Am. Chem. Soc. 2008, 130, 9254–9256; e) A. Deb, S. Bag, R.
Kancherla, D. Maiti, J. Am. Chem. Soc. 2014, 136, 13602–13605; f) F.
Ferlin, S. Santoro, L. Ackermann, L. Vaccaro, Green Chem. 2017, 19,
2510–2514; g) X. Tian, F. Yang, D. Rasina, M. Bauer, S. Warratz, F.
Ferlin, L. Vaccaro, L. Ackermann, Chem. Commun. 2016, 52, 9777–
9780.
subsequent β-hydride elimination offered the target
compound, accompanied by the regeneration of Pd(0) to
restart the catalytic cycle. Having 2 equiv of BQ was essential
for promoting the C–H olefination in a desirable yield
because it played a crucial role not only in oxidizing the
Ag1Pd1 nanoparticles but also in stabilizing the in situ-formed
intermediates.[14]
In conclusion, we have demonstrated that AgPd
nanoparticles anchored on rGO can be used as recyclable
catalysts for the direct aryl C–H olefination of amides with
acrylates under mild conditions. A wide scope of substrates
and functional groups can be tolerated in the reaction system.
Our results suggest that supported alloy nanoparticle
catalysts, benefitting from a synergetic effect from the
constituent atoms, present a foundation for accessing C–H
functionalization reactions unachievable with homogeneous
catalysts. In addition, the Ag1Pd1-rGO catalyst was stable in
the oxidative C–H coupling reaction, which would provide an
alternative way to direct C–H functionalization for practical
applications.
[3]
[4]
a) S. Santoro, S. I. Kozhushkov, L. Ackermann, L. Vaccaro, Green
Chem. 2016, 18, 3471–3493; b) A. J. Reay, I. J. S. Fairlamb, Chem.
Commun. 2015, 51, 16289–16307; c) C. Athira, R. B. Sunoj, Org.
Biomol. Chem. 2017, 15, 246–255.
a) Y.-S. Bao, D. Zhang, M. Jia, B. Zhaorigetu, Green Chem. 2016, 18,
2072–2077; b) K. Kim, Y. Jung, S. Lee, M. Kim, D. Shin, H. Byun, S. J.
Cho, H. Song, H. Kim, Angew. Chem. Int. Ed. 2017, 56, 6952–6956; c)
D. Pla, M. Gómez, ACS Catal. 2016, 6, 3537–3552; d) M. Al-Amin, M.
Arisawa, S. Shuto, Y. Ano, M. Tobisu, N. Chatani, Adv. Synth. Catal.
2014, 356, 1631–1637; e) J. Feng, S. Handa, F. Gallou, B. H. Lipshutz,
Angew. Chem. Int. Ed. 2016, 55, 8979–8983.
[5]
a) V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.-M.
Basset, Chem. Rev. 2011, 111, 3036–3075; b) A. Chem. Rev.
2011, 111, 2251–2320; c) A. Balanta, C. Godard, C. Claver, Chem. Soc.
Rev. 2011, 40, 4973–4985; d) A. R. Siamaki, Y. Lin, K. Woodberry, J.
W. Connell, B. F. Gupton, J. Mater. Chem. A 2013, 1, 12909–12918.
a) D. S. Wang, Y. D. Li, Adv. Mater. 2011, 23, 1044–1060; b) S. Zhang,
O. Metin, D. Su, S. H. Sun, Angew. Chem. Int. Ed. 2013, 52, 3681–
3684.
[6]
[7]
a) S. Diyarbakir, H. Can, O. Metin, ACS Appl. Mater. Interfaces 2015, 7,
3199–3206; b) M. Chen, Z. Zhang, L. Li, Y. Liu, W. Wang, J. Gao, RSC
Adv. 2014, 4, 30914–30922; c) R. K. Rai, D. Tyagi, K. Gupta, S. K.
Singh, Catal. Sci. Technol. 2016, 6, 3341–3361.
Acknowledgements
This study was supported by the National Natural Science
Foundation of China (Nos. 21272006, 21471007).
[8]
[9]
J. W. Zhang, G. P. Lu, C. Cai, Green Chem. 2017, 19, 2535–2540.
a) L. Shang, T. Bian, B. H. Zhang, D. H. Zhang, L.-Z. Wu, C.-H. Tung,
Y. Yin, T. R. Zhang, Angew. Chem. Int. Ed. 2014, 53, 250–254; b) H.
Xu, C. Zhang, W. Zhou, G. R. Li, Nanoscale 2015, 7, 16932–16942.
Conflict of interest
[10] a) L. Li, M. Chen, G. Huang, N. Yang, L. Zhang, H. Wang, Y. Liu, W.
Wang, J. Gao, J. Power Sources 2014, 263, 13–21; b) J. Liu, H. Zhou,
Q. Wang, F. Zeng, Y. Kuang, J. Mater. Sci. 2012, 47, 2188–2194; c) D.
A. Slanac, W. G. Hardin, K. P. Johnston, K. J. Stevenson, J. Am. Chem.
Soc. 2012, 134, 9812–9819.
The authors declare no conflict of interest.
Keywords: Ag1Pd1 nanoparticles • reduced graphene oxide •
recyclable catalyst • C–H olefination • heterogeneous catalysis
[11] Y. Ping, J. M. Yan, Z. L. Wang, H. L. Wang, Q. Jiang, J. Mater. Chem.
A 2013, 1, 12188–12191.
[12] a) G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R.
l aupt J. Am. Chem. Soc. 2009, 131, 8262–8270; b) X. Wang, S. Li,
H. Yu, J. Yu, S. Liu, Chem. Eur. J. 2011, 17, 7777–7780.
[1]
a) C. Jia, D. Piao, J. Oyamada, W. Lu, T. Kitamura, Y. Fujiwara,
Science 2000, 287, 1992–1995; b) K. Godula, D. Sames, Science 2006,
312, 67–72; c) V. Ritleng, C. Sirlin, M. Pfeffe, Chem. Rev. 2002, 102,
1731–1770; d) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev.
2012, 112, 5879–5918; e) B. G. Hashiguchi, S. M. Bischof, M. M.
Konnick, R. A. Periana, Acc. Chem. Res. 2012, 45, 885–898; f) C.
Shen, P. F. Zhang, Q. Sun, S. Q. Bai, T. S. A. Hor, X. G Liu, Chem.
Soc. Rev. 2015, 44, 291–314; g) T. Gensch, M. N. Hopkinson, F.
Glorius, J. Wencel-Delord, Chem. Soc. Rev. 2016, 45, 2900–2936; h)
W. H. Rao, B. F. Shi, Org. Chem. Front. 2016, 3, 1028–1047.
[13] a) T. J. Williams, A. J. Reay, A. C. Whitwood, I. J. Fairlamb, Chem.
Commun. 2014, 50, 3052–3054; b) J. Kim, S. H. Hong, ACS Catal.
2017, 7, 3336–3343; c) J. A. Labinger, J. E. Bercaw, Nature 2002, 417,
507–514; d) A. Deb, A. Hazra, Q. Peng, R. S. Paton, D. Maiti, J. Am.
Chem. Soc. 2017, 139, 763–775; e) Y. Zhou, X. Bao, Org. Lett. 2016,
18, 4506–4509; f) L. L. Chng, J. Zhang, J. Yang, M. Amoura, J. Y. Ying,
Adv. Synth. Catal. 2011, 353, 2988–2998.
[14] a) C. C. Pattillo, I. I. Strambeanu, P. Calleja, N. A. Vermeulen, T.
Mizuno, M. C. White, J. Am. Chem. Soc. 2016, 138, 1265–1272; b) C.
Zhang, J. Ji, P. P. Sun, J. Org. Chem. 2014, 79, 3200–3205.
[2]
a) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. Int. Ed.
2009, 48, 5094–5115; b) D.-H. Wang, K. M. Engle, B.-F. Shi, J.-Q. Yu,
Science 2010, 327, 315–319; c) K. L. Hull, M. S. Sanford, J. Am. Chem.
This article is protected by copyright. All rights reserved.