306
M. Das, S. Chattopadhyay / Inorganica Chimica Acta 378 (2011) 303–306
Table 4
this article can be found, in the online version, at doi:10.1016/
Hydrogen bond distances (Å) and angles (°).
D–HꢀꢀꢀA
D–H
DꢀꢀꢀA
HꢀꢀꢀA
D–HꢀꢀꢀA
N(6)–H(101)ꢀꢀꢀN(5)
N(6)–H(103)ꢀꢀꢀO(3)
N(6)–H(100)ꢀꢀꢀO(6)
N(6)–H(100)ꢀꢀꢀO(7)
N(6)–H(102)ꢀꢀꢀO(1)
N(6)–H(102)ꢀꢀꢀO(2)
O(9)–H(106)ꢀꢀꢀO(5)
1.02(7)
0.62(5)
1.07(7)
1.07(7)
0.75(5)
0.75(5)
0.99(7)
2.940(8)
2.973(7)
2.966(6)
2.920(6)
2.962(7)
2.944(6)
3.160(8)
1.95(7)
2.42(5)
2.38(7)
1.86(7)
2.27(5)
2.37(6)
2.21(7)
162(6)
150(6)
113(4)
171(6)
154(5)
135(5)
163(5)
References
[1] J.A. Zerkowski, C.T. Seto, G.M. Whitesides, J. Am. Chem. Soc. 114 (1992) 5473.
[2] J.-M. Lehn, M. Mascal, A. DeCian, J. Fischer, J. Chem. Soc., Perkin Trans. 2 (1992)
461.
[3] J.-P. Sauvage, M.W. Hosseini, Comprehensive Supramolecular Chemistry, in: J.-
M. Lehn (Ed.), Pergamon, Oxford, vol. 9, 1995.
[4] B.J. Holliday, C.A. Mirkin, Angew. Chem., Int. Ed. 113 (2001) 2076.
[5] B.J. Holliday, C.A. Mirkin, Angew. Chem., Int. Ed. 40 (2001) 2022.
[6] E.N. Jacobsen, Catalytic Asymmetric Synthesis, in: I. Ojima (Ed.), VCH, New
York, 1993.
[7] T. Katsuki, Coord. Chem. Rev. 140 (1995) 189.
[8] E.N. Jacobsen, Acc. Chem. Res. 33 (2000) 421.
[9] T.-T. Tsou, M. Loots, J. Halpern, J. Am. Chem. Soc. 104 (1982) 623.
[10] M.F. Summers, L.G. Marzilli, N. Bresciani-Pahor, L. Randaccio, J. Am. Chem. Soc.
106 (1984) 4478.
[11] S.D. Bella, I. Fragalà, Synth. Met. 115 (2000) 191.
[12] P.G. Lacroix, Eur. J. Inorg. Chem. (2001) 339.
[13] I. Yoon, M. Narita, T. Shimizu, M. Asakawa, J. Am. Chem. Soc. 126 (2004) 16740.
[14] S. Fritzsche, P. Lonnecke, T. Hocher, E. Hey-Hawkins, Z. Anorg. Allg. Chem. 632
(2006) 2256.
[15] C. Arici, D. Ulku, M.N. Tahir, O. Atakol, Acta Crystallogr., Sect. E 57 (2001)
m283.
Ni(2) atoms are 360.03° and 360.07° respectively, indicating
square-planer geometry around the Ni atoms. O(2)–Ni(1)–N(1),
N(2)–Ni(1)–O(2), O(6)–Ni(2)–N(3), O(7)–Ni(2)–N(4) angles are
found to be 178.06(14)°, 177.77(13)°, 178.42(16)° and
178.48(14)°, respectively. Deviations of the coordinating atoms
O(2), O(3), N(1) and N(2) from the least-square mean planes
through them are ꢁ0.031(3), 0.031(3), 0.031(3), ꢁ0.031(3) Å,
respectively, whereas the deviations of the coordinating atoms
O(7), O(6), N(3) and N(4) from the least-square mean planes
through them are ꢁ0.021(3), 0.021(3), 0.021(4), ꢁ0.021(3) Å,
respectively. The dihedral angle between the mean planes passing
through [N(1)–N(2)–O(2)–O(3)] and [N(3)–N(4)–O(6)–O(7)] is
3.93°, suggesting that the two sets of L2ꢁ are almost parallel. The
intra-molecular separation between Ni(1)ꢀꢀꢀNi(2) is 3.734 Å, which
does not imply any metal–metal bonding between the nickel
atoms. The angle between the planes passing through [Ni(1)–
Ni(2)–O(3)] and [Ni(1)–Ni(2)–O(7)] is 45.38° which shows that
the two NiL units are in staggered geometry.
Hydrogen bonding interactions are observed among the ammo-
nium ion, NiL moieties, the thiocyanate anion and the water of
crystallization (Table 4). Of the four hydrogen atoms attached with
N(6), H(101) and H(103) form strong H bond with N(5) of the thio-
cyanate and O(3) of the NiL moiety, respectively. The other two H
atoms, H(102) and H(100), form strong bifurcated hydrogen bonds
with two oxygen atoms, O(1), O(2) and O(6), O(7) of the two differ-
ent [NiL] moieties, respectively. H(106) from the water of crystal-
lization forms strong H-bond with O(5). The H-bonding network
is shown in Fig. 1.
[16] C. Arici, M. Aksu, Anal. Sci. 18 (2002) 727.
[17] C. Arici, D. Ulku, M. Aksu, O. Atakol, J. Chem. Cryst. 33 (2003) 825.
[18] A. Datta, C.R. Choudhury, P. Talukder, S. Mitra, L. Dahlenburg, T. Matsushita, J.
Chem. Res. (2003) 642.
[19] Y. Sui, J.-H. Zhang, R.-H. Hu, R.-Q. Jiang, Acta Crystallogr., Sect. E 63 (2007)
m2256.
[20] G. Novitchi, S. Shova, A. Caneschi, J.-P. Costes, M. Gdaniec, N. Stanica, Dalton
Trans. (2004) 1194.
[21] A.M. Madalan, N. Avarvari, M. Fourmigue, R. Clerac, L.F. Chibotaru, S. Clima, M.
Andruh, Inorg. Chem. 47 (2008) 940.
[22] L. Salmon, P. Thuery, E. Riviere, J.-J. Girerd, M. Ephritikhine, Chem. Commun.
(2003) 762.
[23] J.-P. Costes, G. Novitchi, S. Shova, F. Dahan, B. Donnadieu, J.-P. Tuchagues,
Inorg. Chem. 43 (2004) 7792.
[24] W. Wang, Y.-M. Shen, Acta Crystallogr., Sect. E 65 (2009) m557.
[25] S.D. Angelis, E. Solari, E. Gallo, C. Floriani, A. Chiesi-Villa, C. Rizzoli, Inorg.
Chem. 35 (1996) 5995.
[26] W.-L. Chai, W.-J. Jin, X.-Q. Lu, W.-Y. Bi, J.-R. Song, W.-K. Wong, F. Bao, Inorg.
Chem. Commun. 11 (2008) 699.
[27] D. Cunningham, P. McArdle, M. Mitchell, N.N. Chonchubhair, M. O’Gara, F.
Franceschi, C. Floriani, Inorg. Chem. 39 (2000) 1639.
[28] H. Miyasaka, N. Matsumoto, H. Okawa, N. Re, E. Gallo, C. Floriani, Angew.
Chem., Int. Ed. 34 (1995) 1446.
[29] F.Z.C. Fellah, J.-P. Costes, F. Dahan, C. Duhayon, J.-P. Tuchagues, Polyhedron 26
(2007) 4209.
4. Conclusion
[30] R.-J. Tao, S.-Q. Zang, Z.-W. Yu, J.-Y. Niu, Chin. J. Inorg. Chem. 18 (2002) 907.
[31] N.B. Pahor, M. Calligaris, P. Delise, G. Nardin, L. Randaccio, E. Zotti, G.
Fachinetti, C. Floriani, J. Chem. Soc., Dalton Trans. (1976) 2310.
[32] N.B. Pahor, M. Calligaris, P. Delise, G. Nardin, L. Randaccio, E. Zotti, Assoc. Ital.
Crist. Abstr. (1975) 52.
[33] X. Feng, Z.-X. Du, B.-K. Ye, F.-N. Cui, Chin. J. Struct. Chem. 26 (2007) 1033.
[34] K.P. Sarma, R.K. Poddar, Transition Met. Chem. 9 (1984) 135.
[35] G.M. Sheldrick, SHELXS-97 and SHELXL-97, University of Göttingen, Germany,
1997.
The isolation and crystal structure determination of the ammo-
nium mediated assembly of two NiL fragments, [NH4(NiL)2SCN],
unambiguously shows for the first time that the salen type com-
partmental Schiff base, N,N0-(1,2-Phenylene)-bis(3-methoxysalicy-
lideneimine) can be used to trap ammonium ions. Thus it opens up
new possibilities for the synthesis of such type of compounds.
[36] ABSPACK, version 1, Oxford Diffraction, Abingdon, 2005.
[37] M. Das, S. Chatterjee, S. Chattopadhyay, Inorg. Chem. Commun. 14 (2011)
1337.
Acknowledgement
[38] H. Wang, S.-L. Li, D.-X. Liu, X.-G. Cui, X.-Y. Li, Z.-H. Yang, Chin. Acta Chim. Sinica
52 (1994) 676.
[39] S. Chattopadhyay, M.G.B. Drew, A. Ghosh, Eur. J. Inorg. Chem. (2008) 1693.
[40] S. Chattopadhyay, P. Chakraborty, M.G.B. Drew, A. Ghosh, Inorg. Chim. Acta
362 (2009) 502.
This work was supported by the University Grants Commission,
CAS-UGC, New Delhi.
[41] P. Bhowmik, S. Chattopadhyay, M.G.B. Drew, C. Diaz, A. Ghosh, Polyhedron 29
(2010) 2637.
Appendix A. Supplementary data
[42] M.S. Ray, S. Chattopadhyay, M.G.B. Drew, A. Figuerola, J. Ribas, C. Diaz, A.
Ghosh, Eur. J. Inorg. Chem. (2005) 4562.
[43] S. Chattopadhyay, M.S. Ray, S. Chaudhuri, G. Mukhopadhyay, G. Bocelli, A.
Cantoni, A. Ghosh, Inorg. Chim. Acta 359 (2006) 1367.
CCDC 805838 contains the supplementary crystallographic data
for this paper. The data can be obtained free of charge from The