Journal of the American Chemical Society p. 14713 - 14725 (2013)
Update date:2022-08-11
Topics:
Kirk, Martin L.
Shultz, David A.
Stasiw, Daniel E.
Habel-Rodriguez, Diana
Stein, Benjamin
Boyle, Paul D.
A combination of variable-temperature EPR spectroscopy, electronic absorption spectroscopy, and magnetic susceptibility measurements have been performed on TpCum,MeZn(SQ-m-Ph-NN) (1-meta) a donor-bridge-acceptor (D-B-A) biradical that possesses a cross-conjugated meta-phenylene (m-Ph) bridge and a spin singlet ground state. The experimental results have been interpreted in the context of detailed bonding and excited-state computations in order to understand the excited-state electronic structure of 1-meta. The results reveal important excited-state contributions to the ground-state singlet-triplet splitting in this cross-conjugated D-B-A biradical that contribute to our understanding of electronic coupling in cross-conjugated molecules and specifically to quantum interference effects. In contrast to the conjugated isomer, which is a D-B-A biradical possessing a para-phenylene bridge, admixture of a single low-lying singly excited D → A type configuration into the cross-conjugated D-B-A biradical ground state makes a negligible contribution to the ground-state magnetic exchange interaction. Instead, an excited state formed by a Ph-NN (HOMO) → Ph-NN (LUMO) one-electron promotion configurationally mixes into the ground state of the m-Ph bridged D-A biradical. This results in a double (dynamic) spin polarization mechanism as the dominant contributor to ground-state antiferromagnetic exchange coupling between the SQ and NN spins. Thus, the dominant exchange mechanism is one that activates the bridge moiety via the spin polarization of a doubly occupied orbital with phenylene bridge character. This mechanism is important, as it enhances the electronic and magnetic communication in cross-conjugated D-B-A molecules where, in the case of 1-meta, the magnetic exchange in the active electron approximation is expected to be J ~ 0 cm-1. We hypothesize that similar superexchange mechanisms are common to all cross-conjugated D-B-A triads. Our results are compared to quantum interference effects on electron transfer/transport when cross-conjugated molecules are employed as the bridge or molecular wire component and suggest a mechanism by which electronic coupling (and therefore electron transfer/transport) can be modulated.
View MoreShanghai Haoyuan Chemexpress Co., Ltd.
website:https://www.chemexpress.com/
Contact:86-21-58950125
Address:No.3 Building, No.1999, Zhangheng Road, ZhangjiangHighTech Park, Shanghai, P.R.China,201203
Anhui Redstar Pharmaceutical Corp., Ltd
Contact:+86-563-5120837
Address:Jingxian Industrial Development Zone, Anhui , China
Changsha Goomoo Chemical Technology Co.Ltd
Contact:+86-731-82197655
Address:No.649,Chezhan Rd.(N),Changsha,Hunan,China
Contact:+86-575-82733999 0575-82732999
Address:hangzhou gulf fine chemical zone,shangyu city,zhejiang province
Shenzhen ZheYi Chemicals Co.,LTD(Shanghai Branch)
Contact:+86-21-54159691
Address:Room1002,Building No.2, Lane 98 Bixiu Road,Minhang District, Shanghai,China 201100
Doi:10.1039/c8tb02843e
(2019)Doi:10.1016/S0040-4020(01)82259-6
(1966)Doi:10.1007/BF00513256
(1983)Doi:10.1016/S0040-4020(03)00940-2
(2003)Doi:10.1016/j.jphotochem.2013.05.004
(2013)Doi:10.1246/bcsj.57.634
(1984)