Please do not adjust margins
ChemComm
DOI: 10.1039/C7CC00632B
COMMUNICATION
Journal Name
obtain fully substituted pyran with defined stereochemistry. As
see: For selected advances of geminal bis(silane) chemistry, see: (b)
Q. Luo, C. Wang, Y. X. Li, K. B. Ouyang, L. Gu, M. Uchiyama, Z. F. Xi,
Chem. Sci. 2011, 2, 2271; (c) K. Groll, S. M. Manolikakes, X. M. du
Jourdin, M. Jaric, A. Bredihhin,; K. Karaghiosoff, T. Carell, P. Knochel,
Angew. Chem. Int. Ed. 2013, 52, 6776; (d) H. Y. Cui, J. Y. Zhang, C. M.
Cui, Organometallics 2013, 32, 1; (e) X. F. Bai, W. H. Deng, Z. Xu, F. W.
shown in Scheme 6, treatment of 3d with NBS in CHCl
sequential bromination/lactonization. Pyran 8 was generated in
2% yield with excellent stereochemical control. Interestingly,
switching the solvent from CHCl to CH CN favored a
3
led to a
9
3
3
bromination/hydroxylation process, giving 9 in 90% yield as a single
Li, Y. Deng, C. G. Xia, L. W. Xu, Chem. Asian J. 2014, 9, 1108; (f) Z. X.
Liu, H. C. Tan, T. R. Fu, Y. Xia, D. Qiu, Y. Zhang, J. B. Wang, J. Am.
Chem. Soc. 2015, 137, 128003; (g) Z. J. Liu, X. L. Lin, N. Yang, Z. S. Su,
diastereoisomer.
C. W. Hu, P. H. Xiao, Y. Y. He, Z. L. Song, J. Am. Soc. Chem. 2016, 138
877-1883.
For selected examples using stable carbocation as catalyst, see: (a) T.
,
1
8
Mukaiyama, S. Kobayashi, S. -I. Shoda, Chem. Lett., 1984, 13, 907; (b)
T. Mukaiyama, S. Kobayashi, M. Murakami, Chem. Lett., 1985, 14
,
4
1
47; (c) S. Kobayashi, S. Matsui, T. Mukaiyama, Chem. Lett., 1988, 17
491; (d) M. Yanagisawa, T. Mukaiyama, Chem. Lett., 2001, 30, 224;
,
(
P. K. Mandal, A. Datta, S. K. Mandal, ACS Catal., 2014, , 4307; (f) J.
Bah, J. Franzén, Chem. Eur. J., 2014, 20, 1066; (g) J. Bah, V. R. Naidu,
J. Teske, J. Franzén, Adv. Synth. Catal., 2015, 357, 148; (h) V. R.
Naidu, S. Ni, J. Franzén, ChemCatChem 2015, 7, 1896; (i) J. Lv, Q. C.
Zhang, X. R. Zhong, S. Z. Luo, J. Am. Chem. Soc., 2015, 137, 15576.
For seminal work, see: (a) A. Hosomi, M. Endo, H. Sakurai, Chem.
Lett., 1976, 941. For selected reviews, see: (b) L. E. Overman, T. A.
Blumenkopf, Chem. Rev., 1986, 86, 857; (c) A. Hosomi, Acc. Chem.
Res., 1988, 21, 200; (d) I. Fleming, J. Dunogues, R. Smithers, Org.
React., 1989, 37, 57.
0 (a) E. J. Corey, J. A. Katzenellenbogen, G. H. Posner, J. Am. Chem.
Soc., 1967, 89, 4245; (b) S. E. Denmark, T. K. Jones, J. Org. Chem.,
1982, 47, 4595. (c) D. K. Kee, A. W. Plato, Tetrahedron Lett., 1990, 31,
e) S. R. Roy, A. Nijamudheen, A. Pariyar, A. Ghosh, P. K. Vardhanapu,
4
Scheme 6. Bromination of 3d to form fully substituted pyrans 8 and 9
In summary, we have achieved an enantioselective synthesis of
SiMe /SiPh Me-substituted crotyl geminal bis(silane). This
compound is
asymmetric Sakurai allylation and one-pot Sakurai allylation/Prins
cyclization process. Chemoselective desilylation of SiPh Me leads to
.
3
2
+
-
a
3 6 5 4
useful reagent for Ph C B(C F ) -catalyzed
9
1
2
the efficient chirality transfer, giving Z-anti-(S, S)-selectivity.
Applications of this methodology in organic synthesis are underway.
We are grateful for financial support from the NSFC
(21622202, 21290180, 21502125). The authors thank Prof. Qin
6
137.
Ouyang in Third Military Medical University for his invaluable help
in computational works. The authors also thank Mr. Zhendong Chen
for his invaluable help in editing the supplementary materials.
1
1
1 K. D. Kim, P. A. Wagtiotis, Tetrahedron Lett., 1990, 131, 6137.
2 (a)A. M. M. Castro, Chem. Rev., 2004, 104, 2939. (b) K. C. Majumdar,
R. K. Nandi, Tetrahedron, 2013, 69, 6921
1
1
3 The S-configuration of (S)-1a was assigned by comparing its circular
dichroism spectroscopy with the computational results of both (S)-
1a and (R)-1a. See Supporting Information for details.
Notes and references
4 Claisen rearrangement of mono-3-Z and -E-silyl allylic alcohols
usually proceeds by a classical chair-like transition state. For a
reference, see: J. S. Panek, T. D. Clark, J. Org. Chem., 1992, 57, 4323.
According to Panek’s work, the rearrangement of (S)-6a in our case
by a chair-like transition state should give 1a with the R- rather than
S-configuration. Thus, formation of (S)-1a implies that the reaction
might proceed by a boat transition state. More detailed studies are
underway on this interesting observation.
1
(a) Y. Yamamoto, N. Asao, Chem. Rev., 1993, 93, 2207; (b) S. R.
Chemler, W. R. Roush, Modern Carbonyl Chemistry; J. Otera, Ed.;
WILEY-VCH: New York, 2000; Chapter 11, p 403. (c) I. Fleming, A.
Barbero, D. Walter, Chem. Rev., 1997, 97, 2063; (d) E. Langkopf, D.
Schinzer, Chem. Rev., 1995, 95, 1375. (e) D. G. Hall, H. Lachance,
Allylboration of Carbonyl Compounds; Wiley: Hoboken, NJ, 2012. (f) I.
Fleming, Allylsilanes, allylstannanes and related systems. In
Comprehensive Organic Synthesis; B. M. Trost, I. Fleming, Eds.;
Pergamon Press: Oxford, 1991; Vol. 6, pp 563-593.
1
1
5 (a) J. Ogawa, S. X. Xie, S. Shimizu, Appl Microbiol Biotechnol., 1999,
5
1, 53; (b) S. E. Denmark, N. Werner, J. Am. Chem. Soc., 2010, 132
612.
,
2
(a) Y. Yamamoto, H. Yatagai, K. Maruyama, J. Am. Chem. Soc., 1981,
1
2
3
03, 3229; (b) D. J. S. Tsai, D. S. Matteson, Organometallics, 1983,
36; (c) Y. Yamamoto, K. Maruyama, T. Komatsu, W. Ito, J. Org.
2,
6 CCDC 1528458 [diol of 2a
]
contains the supplementary
crystallographic data for this paper. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
7 For examples of Prins cyclization of 3-Z-silyl allylic alcohols, see: (a) I.
E. Markól, D. J. Bayston, Tetrahedron, 1994, 50, 7141; (b) K. Meilert,
M. A. Brimble, Org. Lett., 2005, 7, 3497; (c) Y. J. Lian, R. J. Hinkle J.
Org. Chem., 2006, 71, 7071; (d) G. Fraboulet, V. Fargeas, M. Paris, J.-
P. Quintard, F. Zammaattio, Tetrahedron, 2009, 65, 3953; (e) J. P. Li,
H. J. Zheng, Y. P. Su, X. Xie, X. G. She, Synlett., 2010, 15, 2283; (f) D.
Clarisse, F. Fache, Tetrahedron Lett., 2014, 55, 2221.
Chem., 1986, 51, 886; (d) M. Shimizu, H. Kitagawa, T. Kurahashi, T.
Hiyama, Angew. Chem. Int. Ed., 2001, 40, 4283; (e) L. Carosi, H.
Lachance, D. G. Hall, Tetrahedron Lett., 2005, 46, 8981; (f) A.
Jiménez-Aquino, E. F. Flegeau, U. Schneider, S. Kobayashi, Chem.
Commun., 2011, 47, 9456; (g) M. Chen, W. R. Roush, Org. Lett., 2013,
1
1
1
5, 1662; (h) Z. Q. Zuo, J. Yang, Z. Huang, Angew. Chem. Int. Ed.,
016, 55, 10839.
2
(a) M. Chen, W. R. Roush, J. Am. Chem. Soc., 2011, 133, 5744; (b) M.
3
4
Chen, W. R. Roush, J. Am. Chem. Soc., 2012
W. R. Roush, J. Org. Chem., 2013, 78, 3.
, 134, 3925; (c) M. Chen,
8 The mechanism of carbocation cation catalysis is currently
controversial. For C -mechanism, see: (a) S. Denmark, C.-T. Chen,
(a) M. Lautens, A. H. Huboux, B. Chin, J. Downer, Tetrahedron Lett.,
990, 131, 5829; (b) M. Lautens, R. N. Ben, P. H. M. Delanghe,
Tetrahedron, 1996, 52, 7221.
+
1
+
Tetrahedron Lett., 1994, 35, 4327. For Si -mechanism, see: (b) T. K.
Hollis, B. Bosnich, J. Am. Chem. Soc., 1995, 117, 4570; (c) C.-T. Chen,
S.-D. Chao, K.-C. Yen, C.-H. Chen, I.-C. Chou, S.-W. Hon, J. Am. Chem.
5
6
7
(a) H. Wetter, P. Scherer, W. B. Schweizer, Helv. Chim. Acta., 1979,
6
2
, 1987; (b) H. Wetter, P. Scherer, Helv. Chim. Acta., 1983, 66, 118.
M. Lautens, P. H. M. Delanghe, Angew. Chem. Int. Ed., 1994, 106
557.
+
Soc., 1997, 119, 11341. For H -mechanism, see: (d) O. Riant, O.
,
Samuel, H. B. Kagan, J. Am. Chem. Soc., 1993, 115, 5835; (e) S.
Taudien, O. Riant, H. Kagan, Tetrahedron Lett., 1995, 36, 3513.
9 C. E. Masse, J. S. Panek, Chem. Rev. 1995, 95, 1293.
2
(a) L. J. Li, X. C. Ye, Y. Wu, L. Gao, Z. L. Song, Z. P. Yin, Y. J. Xu, Org.
Lett., 2013, 15, 1068. For the latest advance of geminal bis(silane),
1
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins