6
existing methods with InCl3 and FeCl3.7 Indium salts
Th e Mich a el Ad d ition of In d oles to
r,â-Un sa tu r a ted Keton es Ca ta lyzed by
CeCl3‚7H2O-Na I Com bin a tion Su p p or ted
on Silica Gel1
produce lower Lewis acidity than cerium trichloride while
ferric chloride is very hygroscopic. However, this CeCl3‚
7H2O-NaI system provides a powerful tool for organic
transformations but stoichiometric amounts of cerium
salt are generally necessary.8 Therefore, development of
cerium-mediated reactions with a catalytic amount of a
cerium source is a challenging subject in organic chem-
istry.9
Giuseppe Bartoli,‡ Massimo Bartolacci,† Marcella Bosco,‡
Gioia Foglia,† Arianna Giuliani,† Enrico Marcantoni,*,†
Letizia Sambri,‡ and Elisabetta Torregiani†
Dipartimento di Scienze Chimiche, Universita` di Camerino,
via S. Agostino 1, I-62032 Camerino (MC), Italy, and
Dipartimento di Chimica Organica “A. Mangini”, Universita`
di Bologna, viale Risorgimento 4, I-40136 Bologna, Italy
In the course of our research on application of CeCl3
in organic reactions, we have found that the CeCl3‚
7H2O-NaI combination was an effective promoter in the
Michael additions of nucleophiles to R,â-unsaturated
ketones without using any organic solvents.10 The meth-
odology, which is desirable from an environmental point
of view, prompted us to apply it to the Friedel-Crafts-
type conjugate addition of aromatic compounds in solvent-
free conditions.11 Among the aromatic compounds, we
selected indoles as substrates because (i) a number of
indole derivatives occur in many pharmacologically and
biologically active compounds,12 (ii) there is high reactiv-
ity in the 3-position of indole moiety toward the electro-
philic substitution reaction,13 and (iii) over several years
some of us have been involved in developing newer
methodologies allowing the synthesis of indoles.14
enrico.marcantoni@unicam.it
Received March 7, 2003
Abstr a ct: Alkylation of indoles by means of the Michael
addition has been the subject of a number of investigation.
It is well established that regioselectivity in the additions
of indoles to electron-deficient alkenes is strongly controlled
by the reaction medium. In a continuation of the work on
developing greener and cleaner technologies, the cerium(III)
chloride heptahydrate and sodium iodide combination sup-
ported on silica gel catalyzes the alkylation of various indoles
with R,â-unsaturated ketones giving 3-(3-oxoalkyl)indole
derivatives in good yields. The substitution on the indole
nucleus occurred exclusively at the 3-position, and N-
alkylation products have not been observed.
It is well established that regioselectivity in the addi-
tions of indoles to electron-deficient alkenes is strongly
controlled by the reaction medium. Indoles are N-alkyl-
(6) Babu, L. R.; Perumal, P. T. Aldrichim. Acta 2000, 33, 16.
(7) Christoffers, J . Eur. J . Org. Chem. 1998, 1259, 9.
Michael reactions promoted by Lewis acids have at-
tracted much attention as one of the most important
carbon-carbon bond-forming reactions in organic syn-
thesis.2 In particular, they are totally atom-efficient
procedures3 and thus are inherently green transforma-
tions.4 There are several different metal-based Lewis acid
catalysts available for these Michael reactions and the
use of lanthanide triflates5 represents an attractive
alternative to their classical competitors such as AlCl3,
TiCl4, and SnCl4. Unfortunately, lanthanide triflates are
rather expensive and their use in large-scale synthetic
methodology is very limited. For this reason cheaper
Lewis acid catalysts that secure catalytic activity, low
toxicity, moisture, and air tolerance are desirable. In this
direction, the use of a cerium(III) chloride heptahydrate
and sodium iodide combination, which is relatively
nontoxic and inexpensive, is the center of our study. The
CeCl3‚7H2O-NaI system offers some advantages over
(8) (a) Badioli, M.; Ballini, R.; Bartolacci, M.; Bosica, G.; Torregiani,
E.; Marcantoni, E. J . Org. Chem. 2002, 67, 8938. (b) Bartoli, G.; Bosco,
M.; Dalpozzo, R.; Giuliani, A.; Marcantoni, E.; Mecozzi, T.; Sambri,
L.; Torregiani, E. J . Org. Chem. 2002, 67, 9111. (c) Reddy, L. R.; Reddy,
A. M.; Bhaunmathi, N.; Rao, K. R. Synthesis 2001, 831. (d) Bartoli,
G.; Bosco, M.; Marcantoni, E.; Massaccesi, M.; Torregiani, E.; Sambri,
L. J . Org. Chem. 2001, 66, 4430. (e) Bartoli, G.; Bellucci, M. C.; Petrini,
M.; Marcantoni, E.; Sambri, L.; Torregiani, E. Org. Lett. 2000, 2, 1791.
(f) Bartoli, G.; Bellucci, M. C.; Bosco, M.; Marcantoni, E.; Massaccesi,
M.; Petrini, M.; Sambri, L. J . Org. Chem. 2000, 65, 4553.
(9) Marotta, E.; Foresi, E.; Marcelli, T.; Peri, F.; Righi, P.; Scardovi,
N.; Rosini, G. Org. Lett. 2002, 4, 4451.
(10) (a) Bartoli, G.; Bosco, M.; Marcantoni, E.; Petrini, M.; Sambri,
L.; Torregiani, E. J . Org. Chem. 2001, 66, 9052. (b) Bartoli, G.; Bosco,
M.; Bellucci, M. C.; Marcantoni, E.; Sambri, L.; Torregiani, E. Eur. J .
Org. Chem. 1999, 617.
(11) (a) Tundo, P.; Anastas, P.; Black, D. C.; Breen, J .; Collins, T.;
Memoli, S.; Miyamoto, J .; Polyakoff, M.; Tumas, W. Pure Appl. Chem.
2000, 72, 1207. (b) Kotsuki, H.; Hayashida, K.; Shimanouchi, T.;
Nishizawa, H. J . Org. Chem. 1996, 61, 984.
(12) (a) Zhang, H.-C.; Ye, H.; Moretto, A. F.; Brumfield, K. K.;
Maryanoff, B. E. Org. Lett. 2000, 2, 89. (b) Faul, M. M.; Winneroski,
L. L.; Krumrich, C. A. J . Org. Chem. 1998, 63, 6053. (c) Wang, S.-F.;
Chuang, C.-P. Heterocycles 1997, 45, 347. (d) Bennasar, M.-L.; Vidal,
B.; Bosch, J . J . Org. Chem. 1997, 62, 3597. (e) Amat, M.; Hadida, S.;
Pshenichnyi, G.; Bosch, J . J . Org. Chem. 1997, 62, 3158. (f) Tani, M.;
Matsumoto, S.; Aida, V.; Arikawa, S.; Nakane, A.; Yokoyama, Y.;
Murakami, Y. Chem. Pharm. Bull. 1994, 42, 443.
(13) (a) Wynne, J . H.; Stalick, V. M. J . Org. Chem. 2002, 67, 5850.
(b) Yadav, J . S.; Reddy, B. V. S.; Abraham, S.; Sabitha, G. Synlett 2002,
1550. (c) Ottoni, O.; Neder, A. V. F.; Dias, A. K. B.; Cruz, R. P. A.;
Aquino, L. B. Org. Lett. 2001, 3, 1005. (d) Okauchi, T.; Itonaga, M.;
Minami, T.; Owa, T.; Kitoh, K.; Yoshino, H. Org. Lett. 2000, 2, 1485.
(e) Kotsuki, H.; Nishiuchi, M.; Kobayashi, S.; Nishizawa, H. J . Org.
Chem. 1990, 55, 2969.
* To whom correspondence should be addressed. Phone: +39 0737
402255. Fax: +39 0737 637345.
† University of Camerino.
‡ University of Bologna.
(1) Dedicated to Prof. Domenico Spinelli the occasion of his 70th
birthday.
(2) For some recent examples, see: Christoffers, J . Synlett 2001,
723.
(3) (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Trost, B. M.
Science 1991, 254, 1471.
(4) Anastas, P.; Warner, J . C. In Green Chemistry: Theory and
Practice; Oxford: Oxford, UK, 1998.
(5) (a) Mori, Y.; Kakumoto, K.; Manabe, K.; Kobayashi, S. Tetrahe-
dron Lett. 2000, 41, 3107. (b) Manabe, K.; Mori, Y.; Wekabayashi, T.;
Nagayama, S.; Kobayashi, S. J . Am. Chem. Soc. 2000, 122, 7202.
(14) (a) Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. Tetrahedron
Lett. 1989, 30, 2129. (b) Bartoli, G.; Bosco, M.; Dalpozzo, R.; Palmieri,
G.; Marcantoni, E. J . Chem. Soc., Perkin Trans. 1 1991, 2757. (c)
Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R.; Petrini, M. J . Chem.
Soc., Perkin Trans. 2 1991, 657.
10.1021/jo034303y CCC: $25.00 © 2003 American Chemical Society
Published on Web 05/06/2003
4594
J . Org. Chem. 2003, 68, 4594-4597