12 of 13
MOHAMMADI ET AL.
Rabbani, S. Shahrokh, Appl. Organometal. Chem. 2015, 29, 809;
l) A. Maleki, M. Aghaei, N. Ghamari, Appl. Organometal. Chem.
2016, 30, 939.
1,3‐Diphenylurea (3c). Grey solid; yield 65% (Table 6,
entry 3). H NMR (CDCl3, 500 MHz, δ, ppm): 6.85 (s, b,
1
1H, amide), 7.11–7.02 (m, 2H, ArH), 7.16 (brs, 1H, amide),
7.38–7.24 (m, 8H, ArH). 13C NMR (CDCl3, 126 MHz, δ,
ppm): 110.0, 120.9, 121.8, 124.0, 124.10, 129.23, 129.38,
138.2, 156.6. ESI‐MS m/z: 212 (M+). Anal. Calcd for
C13H12N2O (%): C 73.56, H 5.70, N 13.20, O 7.54; found
(%): C 73.40, H 5.74, N 13.30, O 7.56.
N‐(4‐(Trifluoromethyl)phenyl)nicotinamide (3f). White
solid; yield 75% (Table 6, entry 6). 1H NMR (CDCl3,
500 MHz, δ, ppm): 7.55–7.39 (m, 3H), 7.88 (d, J = 8.0 Hz,
1H, pyridine‐H), 7.98 (s, 1H, Ar‐CF3), 8.26 (d, J = 8.0 Hz,
1H, pyridine‐H), 8.38 (s, 1H, pyridine‐H), 8.77 (s, 1H, pyri-
dine‐H), 9.05 (s, 1H, amide). 13C NMR (CDCl3, 126 MHz, δ,
ppm): 117.2, 121.7, 123.7, 124.07, 128.9, 131.0, 131.6,
135.9, 138.1, 147.8, 152.6, 164.6. ESI‐MS m/z: 266 (M+).
Anal. Calcd for C13H9F3N2O (%): C 58.72, H 3.33, F 1.40,
N 10.48, O 6.10; found (%): C, 58.65; H, 3.34; F, 21.46; N,
10.48; O, 6.10.
[5] a) D. Zhang, C. Zhou, Z. Sun, L. Z. Wu, C. H. Tung, T. Zhang,
Nanoscale 2012, 4, 6244; b) B. Karimi, F. Mansouri, H. M.
Mirzaei, ChemCatChem 2015, 7, 1736; c) V. Polshettiwar, R.
Luque, A. Fihri, H. Zhu, M. Bouhrara, J. M. Basset, Chem. Rev.
2011, 111, 3036; d) S. Shylesh, V. Schunemann, W. R. Thiel,
Angew. Chem. Int. Ed. 2010, 49, 3428; e) S. Laurent, D. Forge,
M. Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller, Chem. Rev.
2008, 108, 2064; f) A. H. Lu, E. L. Salabas, F. Schuth, Angew.
Chem. Int. Ed. 2007, 46, 1222; g) R. Hudson, Y. Feng, R. S.
Varma, A. Moores, Green Chem. 2014, 16, 4493.
[6] A. K. Cheetham, C. N. R. Rao, R. K. Feller, Chem. Commun. 2006,
4780.
[7] a) A. Arefi Oskouie, S. Taheri, L. Mamani, A. Heydari, Catal.
Commun. 2015, 72, 6; b) S. Taleghania, M. Mirzaeia, H.
Eshtiagh‐Hosseinia, A. Frontera, Coord. Chem. Rev. 2016, 309, 84.
[8] M. M. Unterlass, Eur. J. Inorg. Chem. 2016, 1135.
[9] Y. Takemoto, Org. Biomol. Chem. 2005, 3, 4299.
N‐(3‐Nitrophenyl)nicotinamide (3 g). Brown solid; yield
75% (Table 6, entry 7). H NMR (CDCl3, 300 MHz, δ,
[10] T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2003, 125,
1
12672.
ppm): 7.20 (t, J = 7.5 Hz, 1H, pyridine‐H), 7.36 (d,
J = 13.0 Hz, 2H, aromatic) 7.40 (t, J = 12.5 Hz, 1H, aromatic),
7.67 (s, 1H, Ar‐NO2), 7.80 (d, 2H, pyridine‐H), 8.55 (s, 1H,
pyridine‐H), 8.77 (brs, 1H, pyridine‐H), 9.03 (s, 1H, amide),
9.56 (s, 1H, amide). 13C NMR (CDCl3, 126 MHz, δ, ppm):
115.8, 120.1, 126.6, 129.3 × 2, 130.6, 131.4 × 2, 133.0,
136.2, 153.5, 164.3. ESI‐MS m/z: 243 (M+). Anal. Calcd for
C12H9N3O3 (%): C 59.26, H 3.73, N 17.28, O 19.73; found
(%): C 59.35, H 3.70, N 17.2, O 19.6.
[11] D. P. Curran, L. H. Kuo, J. Org. Chem. 1994, 59, 3259.
[12] D. P. Curran, L. H. Kuo, Tetrahedron Lett. 1995, 36, 6647.
[13] X. J. Li, L. Kun, M. Hai, N. Jing, M. Jun‐An, Synlett 2008, 20,
3242.
[14] K. Liu, C. Han‐Feng, N. Jing, D. Ke‐Yan, L. Xiao‐Juan, M. Jun‐
An, Org. Lett. 2007, 9, 923.
[15] M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901.
[16] M. S. Sigman, P. Vachal, E. N. Jacobsen, Angew. Chem. Int. Ed.
2000, 39, 1279.
[17] S. Yoshihiro, A. Tanatani, Y. Hashimoto, K. Nagasawa, Tetrahe-
dron Lett. 2004, 45, 5589.
ACKNOWLEDGEMENT
We thank Bu‐Ali Sina University and Iran National Science
Foundation (INSF) for financial support (grant no. 940124)
to our research groups.
[18] S. Yoshihiro, A. Tanatani, Y. Hashimoto, K. Nagasawa, Adv. Synth.
Catal. 2005, 347, 1643.
[19] R. P. Herrera, S. Valentina, B. Luca, A. Ricci, Angew. Chem. Int.
Ed. 2005, 44, 6576.
REFERENCES
[20] J. Wang, H. Li, X. Yu, L. Zu, W. Wang, Org. Lett. 2005, 7, 4293.
[21] B. Vakulya, S. Varga, A. Csampai, T. Soos, Org. Lett. 2005, 7,
[1] M. Mokhtary, J. Iran. Chem. Soc. 2016, 13, 1827.
1967.
[2] V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Science 2001, 291,
[22] C. L. Cao, M. C. Ye, X. Li Sun, Y. Tang, Org. Lett. 2006, 8, 2901.
[23] A. Berkessel, K. Roland, J. M. Neudorfl, Org. Lett. 2006, 8, 4195.
2115.
[3] R. J. White, R. Luque, V. L. Budarin, J. H. Clark, D. J. Macquarrie,
Chem. Soc. Rev. 2009, 38, 481.
[24] H. Miyabe, S. Tuchida, M. Yamauchi, Y. Takemoto, Synthesis
2006, 19, 3295.
[4] a) T. Cheng, D. Zhang, H. Li, G. Liu, Green Chem. 2014, 16, 3401;
b) A. Maleki, M. Aghaei, Ultrason. Sonochem. 2016, https://doi.
2012, 68, 7827; d) A. Maleki, Tetrahedron Lett. 2013, 54, 2055;
e) A. Maleki, N. Ghamari, M. Kamalzare, RSC Adv. 2014, 4,
9416; f) A. Maleki, Helv. Chim. Acta 2014, 97, 587; g) A. Maleki,
M. Kamalzare, Catal. Commun. 2014, 53, 67; h) A. Maleki, R.
Paydar, RSC Adv. 2015, 5, 33177; i) A. Maleki, H. Movahed, R.
Paydar, RSC Adv. 2016, 6, 13657; j) A. Maleki, H. Movahed, P.
Ravaghi, Carbohydr. Polym. 2017, 156, 259; k) A. Maleki, M.
[25] C. S. Wilcox, E. Kim, D. Romano, L. H. Kuo, A. L. Burt, D. P.
Curran, Tetrahedron 1995, 51, 621.
[26] a) T. R. Kelly, M. K. Kim, J. Am. Chem. Soc. 1994, 116, 7072;
b) F. P. Schmidtchen, M. Berger, Chem. Rev. 1997, 97, 1609; c)
B. R. Linton, M. S. Goodman, A. D. Hamilton, Chem. – Eur. J.
2000, 6, 2449.
[27] T. R. Kelly, P. Meghani, V. S. Ekkundi, Tetrahedron Lett. 1990, 31,
3381.