10.1002/anie.201802540
Angewandte Chemie International Edition
1175-1177; d) A. Tamaki, J. K. Kochi, J. Organomet. Chem. 1974, 64,
411-425; e) A. Johnson, R. J. Puddephatt, J. Organomet. Chem. 1975,
85, 115-121; f) M. D. Levin, F. D. Toste, Angew. Chem. Int. Ed. 2014,
53, 6211-6215; g) M. S. Winston, W. J. Wolf, F. D. Toste, J. Am.
Chem. Soc. 2014, 136, 7777-7782.
For reviews on Au(I/III) oxidative coupling, see: a) M. N. Hopkinson,
A. D. Gee, V. Gouverneur, Chem. Eur. J. 2011, 17, 8248-8262; b) H.
A. Wegner, M. Auzias, Angew. Chem. Int. Ed. 2011, 50, 8236-8247;
for pioneer work reported on Au(I/III) cross-coupling, see: c) G.
Zhang, Y. Peng, L. Cui, L. Zhang, Angew. Chem. Int. Ed. 2009, 48,
3112-3115; d) A. S. K. Hashmi, T. D. Ramamurthi, F. Rominger, J.
Organomet. Chem. 2009, 694, 592-597; e) M. Pazicky, A. Loos, M. J.
Ferreira, D. Serra, N. Vinokunov, F. Rominger, C. Jakel, A. S. K.
Hashmi, M. Limbach, Organometallics 2010, 29, 4448-4458.
For early examples of Au(III)-mediated nucleophilic addition-homo-
coupling sequence, see: a) A. S. K. Hashmi, M. C. Blanco, D. Fisher,
J. W. Bats, Eur. J. Org. Chem. 2006, 1387-1389; b) H. A. Wegner, S.
Ahles, M. Neuburger, Chem. Eur. J. 2008, 14, 11310-11313; c) S.
Fustero, P. Bello, B. Fernandez, C. del Pozo, G. B. Hammond, J. Org.
Chem. 2009, 74, 7690-7696; for Au(I) catalyzed nucleophilic
addition-cross-coupling sequence, see: d) G. Zhang, L. Cui, Y. Wang,
L. Zhang, J. Am. Chem. Soc. 2010, 132, 1474-1475; e) A. D. Melhado,
W. E. Brenzovich Jr., A. D. Lacktner, F. D. Toste, J. Am. Chem. Soc.
2010, 132, 8885-8887; f) W. E. Brenzovich Jr., D. Benitez, A. D.
Lacktner, H. P. Shunatona, E. Tkatchouk, W. A. Goddard III, F. D.
Toste, Angew. Chem. Int. Ed. 2010, 49, 5519-5522.
redox catalysis. The Au(I/III) catalytic cycle is proposed with
sulfonium cation as a mild oxidant, which is confirmed by Mass
Spectrometry study. This reaction displayed a broad substrate scope.
Different alkynes including carbonyl-activated alkynes, halo-
alkynes are well-suited for this transformation; intramolecular
cyclizations proved feasible too. Subsequent transformations on
thioallylation products further indicated the synthetic utility of this
reaction. Detailed mechanistic study as well as expanding this mild
gold redox strategy to other sulfides and alkynes are currently under
investigation in our group.
[8]
[9]
Figure 3. Synthetic utilities
A) Thioflavanone synthesis
O
S
O
TFA/TFAA 2:1, rt, 2 h
H
OH
S
3t
8, 85%
B) Sulfone synthesis
Ph
S
Ph
mCPBA, DCM, 0 oC, 1 h
SO2
[10] For photoredox conditions with gold catalysts and photo-active dyes,
see: a) B. Sahoo, M. N. Hopkinson, F. Glorius, J. Am. Chem. Soc.
2013, 135, 5505-5508; b) X. Shu, M. Zhang, Y. He, H. Frei, F. D.
Toste, J. Am. Chem. Soc. 2014, 136, 5844-5847; c) M. N. Hopkinson,
A. Tlahuext-Aca, F. Glorius, Acc. Chem. Res. 2016, 49, 2261-2272;
for photoredox conditions with photo-active gold catalyst only and no
additional dyes, see: d) J. Xie, S. Shi, T. Zhang, N. Mehrkens, M.
Rudolph, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2015, 54, 6046-
6050; e) J. Xie, T. Zhang, F. Chen, N. Mehrkens, F. Rominger, M.
Rudolph, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 2934-
2938; f) L. Huang, M. Rudolph, F. Rominger, A. S. K. Hashmi,
Angew. Chem. Int. Ed. 2016, 55, 4808-4813; g) J. Xie, J. Li, V.
Weingand, M. Rudolph, A. S. K. Hashmi, Chem. Eur. J. 2016, 22,
12646-12650; h) L. Huang, F. Rominger, M. Rudolph, A. S. K.
Hashmi, Chem. Commun. 2016, 52, 6435-6438; i) S. Witzel, J. Xie, M.
Rudolph, A. S. K. Hashmi, Adv. Synth. Catal. 2017, 359, 1522-1528;
for basic conditions, see: j) R. Cai, M. Lu, E. Y. Aguilera, Y. Xi, N. G.
Akmedov, J. L. Petersen, H. Chen, X. Shi, Angew. Chem. Int. Ed.
2015, 54, 8772-8776; k) B. Dong, H. Peng, S. E. Motika, X. Shi,
Chem. Eur. J. 2017, 23, 11093-11099.
[11] For Meyer-Schuster-type rearrangement, see a) G. Zhang, Y. Peng, L.
Cui, L. Zhang, Angew. Chem. Int. Ed. 2009, 48, 3112-3115; b) Y. Yu,
W. Yang, D. Pflasterer, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2014,
53, 1144-1147; c) J. Um, H. Yun, S. Shin Org. Lett. 2016, 18, 484-
487; d) A. Tlahuext-Aca, M. N. Hopkinson, R. A. Garza-Sanchez, F.
Glorius, Chem. Eur. J. 2016, 23, 5909-5913; for Sonogashira-type
coupling reaction, see: e) A. Tlahuext-Aca, M. N. Hopkinson, B.
Sahoo, F. Glorius, Chem. Sci. 2016, 7, 89-93; for oxyarylation and
aminoarylation, see: f) L. Huang, M. Rudolph, F. Rominger, A. S. K.
Hashmi, Angew. Chem. Int. Ed. 2016, 55, 4808-4813; g) Z. Wang, T.
Tan, C. Wang, D. Yuan, T. Zhang, P. Zhu, C. Zhu, J. Zhou, L. Ye,
Chem. Commun. 2017, 53, 6848-6851.
Br
Br
Ph
Ph
5a
9, 86%
C) Suzuki coupling
t-Bu
Ph
S
t-Bu
Ph
S
Pd(PPh3)2Cl2 5%
+
Br
Ph
Ph
K3PO4, toluene, 80 oC, 16 h
B(OH)2
5a
10, 98%
Keywords: gold redox catalysis · thioallylation · vinyl gold · sulfonium
cation
[1]
For reviews, see: a) A. S. K. Hashmi, Gold Bull. 2004, 37, 51-65; b) A.
Fürstner, P. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; c) A.
S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; d) E. Jimenez-
Nunez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350; e) D. J.
Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351-3378; f)
R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 105, 9028-9072; g) A.
M. Asiri, A. S. K. Hashmi, Chem. Soc. Rev. 2016,45, 4471-4503.
a) D. J. Gorin, F. D. Toste, Nature 2007, 446, 395-403; b) M.
Pernpointner, A. S. K. Hashmi, J. Chem. Theory Computation 2009, 5,
2717-2725; c) A. Leyva-Perez, A. Corma, Angew. Chem. Int. Ed.
2012, 51, 614-635.
Several vinyl gold species have been isolated, see: a) J. A. Akana, K.
X Bhattacharyya, P. Muller, J. P. Sadighi, J. Am. Chem. Soc. 2007,
129, 7736-7737; b) L.-P. Liu, B. Xu, M. S. Mashuta, G. B. Hammond,
J. Am. Chem. Soc. 2008, 130, 17642-17643; c) D. Weber, M. A.
Tarselli, M. R. Gagne, Angew. Chem. Int. Ed. 2009, 48, 5733-5736; d)
A. S. K. Hashmi, A. M. Shuster, F. Rominger, Angew. Chem. Int. Ed.
2009, 48, 8247-8249.
[2]
[3]
[12] X. Ye, J. Wang, S. Ding, S. Hosseyni, L. Wojtas, N. G. Akhmedov, X.
Shi, Chem. Eur. J. 2017, 23, 10506-10510.
[13] Hashmi group reported an intramolecular oxyallylation reaction in an
analogous allyl 2-ethynylphenyl ether system; a mechanism involving
[3,3]-sigmatropic rearrangement was proposed, which is supported by
cross-over experiment and computational study. See: a) A. S. K.
Hashmi, K. Graf, M. Ackermann, F. Rominger, ChemCatChem 2013,
5, 1200-1204; b) M. Ackermann, J. Bucher, M. Rappold, K. Graf, F.
Rominger, A. S. K. Hashmi, Chem. Asian J. 2013, 8, 1786-1794; c) L.
N. dos Santos Comprido, J. E. M. N. Klein, G. Knizia, J. Kastner, A.
S. K. Hashmi, Chem. Eur. J. 2017, 23, 10901-10905.
[4]
a) A. Buzas, F. Gagosz, Org. Lett. 2006, 8, 515-518; b) M. Yu, G.
Zhang, L. Zhang, Org. Lett. 2007, 9, 2147-2150; c) D. Wang, X. Ye,
X. Shi, Org. Lett. 2010, 12, 2088-2091; d) T. Wang, S. Shi, M.
Rudolph, A. S. K. Hashmi, Adv. Syn. Catal. 2014, 356, 2337-2342.
H. Peng, N. G. Akhmedov, Y. Liang, N. Jiao, X. Shi, J. Am. Chem.
Soc. 2015, 137, 8912-8915.
For Au/metal dual catalysis, see: a) J. Hirner, Y. Shi, S. Blum, Acc.
Chem. Res. 2011, 44, 603-613; b) A. S. K. Hashmi, C. Lothschütz, R.
Dopp, M. Ackermann, J. D. B. Becker, M. Rudolph, C. Scholz, F.
Rominger, Adv. Syn. Catal. 2012, 354, 133-147; c) P. Garcia-
Dominguez, C. Nevado, J. Am. Chem. Soc. 2016, 138, 3266-3269.
For examples of oxidative addition of Au(I) to alkyl halides, see: a) A.
Tamaki, J. K. Kochi, J. Organomet. Chem. 1972, 40, C81-C84; b) A.
Tamaki, J. K. Kochi, J. Chem. Soc., Dalton Trans. 1973, 23, 2620-
2626; c) A. Tamaki, J. K. Kochi, Inorg. Nucl. Chem. Lett. 1973, 9,
[5]
[6]
[14] K. Hayakawa, Y. Kamikawaji, K. Kanematsu, Tetrahedron. Lett.
1982, 23, 2171-2174.
[15] a) K. A. Dekorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang,
R. P. Hsung, Chem. Rev. 2010, 110, 5064-5106; b) G. Evano, A.
Coste, K. Jouvin, Angew. Chem. Int. Ed. 2010, 45, 2840-2859.
[16] K. S. Sindhu, A. P. Thankachan, P. S. Sajitha, G. Anikumar, Org.
Biomol. Chem. 2015, 13, 6891-6905.
[7]
[17] W. Wu, H. Jiang, Acc. Chem. Res. 2014, 47, 2483-2504.
4
This article is protected by copyright. All rights reserved.