Communication
Organic & Biomolecular Chemistry
computational equipment used in this study (ref. EP/H011455/1).
This work was supported in-part by EPSRC ‘ENERGY’ grant,
ref. no. EP/K031589/1.
Notes and references
1 (a) C. R. Cremo, in Methods in Enzymology, ed. I. P. Gerard
Marriott, Academic Press, 2003, vol. 360, pp. 128–177;
(b) D. M. Jameson and J. F. Eccleston, in Methods in Enzymo-
logy, ed. M. L. J. Ludwig Brand, Academic Press, 1997,
vol. 278, pp. 363–390; (c) C. R. Bagshaw, J. Cell Sci., 2001,
114, 459–460.
2 (a) A. G. Firth, I. J. S. Fairlamb, K. Darley and
C. G. Baumann, Tetrahedron Lett., 2006, 47, 3529–3533;
(b) T. E. Storr, J. A. Strohmeier, C. G. Baumann and
I. J. S. Fairlamb, Chem. Commun., 2010, 46, 6470–6472.
3 (a) H. Cahova, R. Pohl, L. Bednarova, K. Novakova,
J. Cvacka and M. Hocek, Org. Biomol. Chem., 2008, 6, 3657–
3660; (b) A. G. Firth, Synthesis and characterisation of fluo-
rescent ribonucleotide substrates for DNA-dependent RNA poly-
merases, University of York, 2008.
Fig. 5 Lippert–Mataga plot for compound 4a.
4 (a) M. Vrabel, R. Pohl, I. Votruba, M. Sajadi,
S. A. Kovalenko, N. P. Ernsting and M. Hocek, Org. Biomol.
Chem., 2008, 6, 2852–2860; (b) S. Jäger, G. Rasched,
H. Kornreich-Leshem, M. Engeser, O. Thum and
M. Famulok, J. Am. Chem. Soc., 2005, 127, 15071–15082;
(c) G. F. Kaufmann, M. M. Meijler, C. Sun, D.-W. Chen,
D. P. Kujawa, J. M. Mee, T. Z. Hoffman, P. Wirsching,
R. A. Lerner and K. D. Janda, Angew. Chem., Int. Ed., 2005,
44, 2144–2148. For a recent discussion of photoswitchable
7-substituted 7-deazaadenosine systems, see: (d) M. Singer
and A. Jäschke, J. Am. Chem. Soc., 2010, 132, 8372–8377.
5 F. Seela and M. Zulauf, Helv. Chim. Acta, 1999, 82, 1878–
1898.
the majority of other bespoke fluorescent C-modified nucleo-
sides reported to date.
In conclusion, a novel class of 7-modified-7-deazaadenosine
nucleosides 4a–e have been designed and synthesised from
the corresponding 7-iodo nucleoside 11, using multi-step
Pd-catalysed cross-coupling approaches. The nucleosides exhibit
promising UV-visible absorption and fluorescence properties,
with large quantum yields and absorption maxima shifted
away from the intrinsic absorption associated with amino acid
and nucleic acid residues. The changes in the absorption
and emission wavelengths in different solvents indicate that
the fluorescence properties of 4a are quite complex, whereas
the Stokes shift exhibits a reasonable linear correlation with the
orientation polarizability of the solvent. DFT calculations pro-
vided valuable insight into the fluorescent properties observed
experimentally for reported compound 3, and the herein
described novel compounds 4a–e.
We were particularly pleased with the quantum yield for 4a
in water (Φ = 0.15). The incorporation of a compact fluoro-
phore means that the chemical modification should not have a
pronounced effect on either: (i) the biological compatibility of
the nucleoside, or (ii) the stability of nucleic acids containing
these C7-modified nucleotides. Applications for this class of
fluorescent biomolecules will be reported in due course.
6 F. Seela, M. Zulauf, M. Sauer and M. Deimel, Helv. Chim.
Acta, 2000, 83, 910–927.
7 (a) A. E. Stiegman, V. M. Miskowski, J. W. Perry and
D. R. Coulter, J. Am. Chem. Soc., 1987, 109, 5884–5886;
(b) A. E. Stiegman, E. Graham, K. J. Perry, L. R. Khundkar,
L. T. Cheng and J. W. Perry, J. Am. Chem. Soc., 1991, 113,
7658–7666.
8 F. Seela and X. Ming, Tetrahedron, 2007, 63, 9850–9861.
9 S.-L. Zheng, S. Reid, N. Lin and B. Wang, Tetrahedron Lett.,
2006, 47, 2331–2335.
10 E. C. Western, J. R. Daft, E. M. Johnson, P. M. Gannett and
K. H. Shaughnessy, J. Org. Chem., 2003, 68, 6767–6774.
11 J. R. Lakowicz, Principles of Fluorescence Spectroscopy,
Springer, New York, 3rd edn, 2006.
12 C. D. Entwistle, J. C. Collings, A. Steffen, L.-O. Palsson,
A. Beeby, D. Albesa-Jove, J. M. Burke, A. S. Batsanov,
J. A. K. Howard, J. A. Mosely, S.-Y. Poon, W.-Y. Wong,
F. Ibersiene, S. Fathallah, A. Boucekkine, J.-F. Halet and
T. B. Marder, J. Mater. Chem., 2009, 19, 7532–7544.
Acknowledgements
We thank BBSRC (S. De O./ref. BB/D527034/1), University of
York and the Royal Society (I. J. S. F.) for funding this
work. R. M. E. thanks Durham University for a Durham
Doctoral Fellowship. We are grateful to EPSRC for funding the
72 | Org. Biomol. Chem., 2015, 13, 68–72
This journal is © The Royal Society of Chemistry 2015