Mendeleev Commun., 2019, 29, 616–618
3 E. W. Gerner and F. L. Meyskens, Jr., Nat. Rev. Cancer, 2004, 4, 781.
spermine- or triethyltetramine-based LPAs. Moreover, a four-
fold increase in the cytotoxicity against the MCF7 cells was
observed for compound 6f in comparison with natural spermine
analogue 6a (see Figure 1). For all the cell lines tested, the
cytotoxicity of the spermine-based compounds 6a–e was hardly
influenced by the length of the O-alkyl chain at C1 position of
the glycerol backbone (see Online Supplementary Materials,
Figure S1). The cytotoxicity of these compounds against the
HCT116 cells (IC50 6.20–2.97 µmol dm–3) was comparable with
the effect against the MCF7 (IC50 5.80–1.82 µmol dm–3) cell
lines, whereas it was lower against the K562 cells (IC50 2.25–
1.30 µmol dm–3). However, LPA 6a with octadecyl residue was
less active than other analogues against HCT116 and MCF7
cells but more effective against K562 cells.
Interestingly, the unsymmetrically dialkylated PA derivatives
6f–g were more effective against the HTC116 and K562 cells
than their monoalkylated analogues 7c–d with free terminal NH2
group (Figure 2). Accordingly, no significant difference in the
cytotoxic activity of spermine-based PAs 6a and 7a was observed
against all tested cell lines.
4 U. K. Basuroy and E. W. Gerner, Biochem. J., 2006, 139, 27.
5 R. A. Casero, Jr., T. R. Murray-Stewart and A. E. Pegg, Nat. Rev.
Cancer, 2018, 18, 681.
6 T. R. Murray-Stewart, P. M. Woster and R. A. Casero, Jr., Biochem. J.,
2016, 473, 2937.
7 R. A. Casero, Jr. and P. M. Woster, J. Med. Chem., 2009, 52, 4551.
8 S. L. Nowotarski, P. M. Woster and R. A. Casero, Jr., Expert. Rev. Mol.
Med., 2013, 15, e3.
9 M. A. Khomutov, M. T. Hyvönen, A. R. Simonian, J. Weisell,
J. Vepsäläinen, L. Alhonen, S. N. Kochetkov, T. A. Keinänen and A. R.
Khomutov, Mendeleev Commun., 2018, 28, 479.
10 N. V. Plyavnik, A. A. Shtil and G. A. Serebrennikova, Mini Rev. Med.
Chem., 2006, 6, 533.
11 F. Mollinedo, Anti-Cancer Agents Med. Chem., 2014, 14, 495.
12 A. A. Markova, N. V. Plyavnik, V. V. Tatarskii, Jr., A. A. Shtil and G. A.
Serebrennikova, Russ. J. Bioorg. Chem., 2010, 36, 532 (Bioorg. Khim.,
2010, 36, 574).
13 A. A. Markova, N. V. Plyavnik, N. G. Morozova, M. A. Maslov and
A. A. Shtil, Russ. Chem. Bull., Int. Ed., 2014, 63, 1081 (Izv. Akad. Nauk,
Ser. Khim., 2014, 1081).
14 V. Kuksa, R. Buchan and P. K. T. Lin, Synthesis, 2000, 1189.
15 B. T. Golding, M. C. O’Sullivan and L. L. Smith, Tetrahedron Lett.,
1988, 29, 6651.
The evaluation of the ability to disrupt human erythrocytes
revealed that novel LPAs did not mediate any distinguish hemolytic
effect, similarly to the reference compounds CL25 and DENSpm,
whereas Edelfosine stronger induced the erythrocytes damage
(Table S2, see Online Supplementary Materials). Moreover, the
hemolytic activity decreased with the decrease in the length of the
C1-positioned O-alkyl chain of compounds 6b–e. Norspermine-
based LPAs 6f and 7c had less effect than their spermine analogues
6b and 7b. The presence of ethyl group at the terminal NH2 group
did not affect the hemolytic activity in the case of spermine LPAs
but decreased that for norspermin LPAs.
In summary, new lipophilic tetraamine derivatives have been
designed and synthesized using the Fukuyama reaction.
The results of the MTT-assay allow one to consider these
compounds as potential antitumour agents. Using different
combinations of substituents, we have demonstrated that
unsymmetrically dialkylated lipophilic polyamines with
norspermine backbones are the promising candidates for the
further biological investigations. The synthesis and the biological
screening of optically active LPAs are currently underway.
16 V. Corcé, E. Morin, S. Guihéneuf, E. Renault, S. Renaud, I. Cannie,
R. Tripier, L. M. P. Lima, K. Julienne, S. G. Gouin, O. Loreal,
D. Deniaud and F. Gaboriau, Bioconjugate Chem., 2012, 23, 1952.
17 T. J. Haussener, P. R. Sebahar, H. R. K. Reddy, D. L. Williams and R. E.
Looper, Tetrahedron Lett., 2016, 57, 2845.
18 M. L. Edwards, N. J. Prakash, D. M. Stemerick, S. P. Sunkara, A. J.
Bitonti, G. F. Davis, J. A. Dumont and P. Bey, Med. Chem., 1990, 33,
1369.
19 G. E. Magoulas, T. Tsigkou, L. Skondra, M. Lamprou, P. Tsoukala,
V. Kokkinogouli, E. Pantazaka, D. Papaioannou, C. M.Athanassopoulos
and E. Papadimitriou, Bioorg. Med. Chem., 2017, 25, 3756.
20 S. P. Panchenko, A. D. Averin, M. S. Lyakhovich, A. S. Abel, O. A.
Maloshitskaya and I. P. Beletskaya, Russ. Chem. Bull. Int. Ed., 2017,
66, 1611 (Izv. Akad. Nauk, Ser. Khim., 2017, 1611).
21 M. Li, Y. Wang, C. Ge, L. Chang, C. Wang, Z. Tian, S. Wang, F. Dai,
L. Zhao and S. Xie, Eur. J. Med. Chem., 2018, 143, 1732.
22 I.A. Petukhov, M.A. Maslov, N. G. Morozova and G.A. Serebrennikova,
Russ. Chem. Bull., Int. Ed., 2010, 59, 260 (Izv. Akad. Nauk, Ser. Khim.,
2010, 254).
23 P. A. Puchkov, K. A. Perevoshchikova, I. A. Kartashova, A. S. Luneva,
T. O. Kabilova, N. G. Morozova, M. A. Zenkova and M. A. Maslov,
Russ. J. Bioorg. Chem., 2017, 43, 561 (Bioorg. Khim., 2017, 43, 543).
24 D. Xu, K. Prasad, O. Repic and T. J. Blacklock, Tetrahedron Lett., 1995,
36, 7357.
This study was supported in part by the Ministry of Education
and Science of the Russian Federation (base part of state
assignment 4.9671.2017/BP) and by the Russian Foundation for
Basic Research (project no. 18-33-20192).
25 E. V. Shmendel, K. A. Perevoshchikova, D. K. Shishova, T. S. Kubasova,
L. L. Tyutyunnik, M. A. Maslov and A. A. Shtil, Russ. Chem. Bull., Int.
Ed., 2015, 64, 1648 (Izv. Akad. Nauk, Ser. Khim., 2015, 1648).
26 L. Linderoth, P. Fristrup, M. Hansen, F. Melander, R. Madsen, T. L.
Andresen and G. H. Peters, J. Am. Chem. Soc., 2009, 131, 12193.
27 T. Fukuyama, C.-K. Jow and M. Cheung, Tetrahedron Lett., 1995, 36,
6373.
Online Supplementary Materials
Supplementary data associated with this article (general
synthetic procedures, characterization of compounds and details
for cytotoxicity and hemolytic activity assays) can be found in
the online version at doi: 10.1016/j.mencom.2019.11.003.
28 T. Mosmann, J. Immunol. Methods, 1983, 65, 55.
References
1 A. E. Pegg, IUBMB Life, 2009, 61, 880.
2 D. Ramani, J. P. de Bandt and L. Cynober, Clin. Nutr., 2014, 33, 14.
Received: 13th May 2019; Com. 19/5921
– 618 –