P. Y. S. Lam et al. / Tetrahedron Letters 43 (2002) 3091–3094
3093
tive. The active arylating agent is probably a stan-
nane fluoride anion by the fact that the yields are
very low without fluoride additive (entries 5, 6, 7, 9).
When using arylboronic acids, a base/ligand was
required for the reaction. In the case of hypervalent
stannanes, a base/ligand like TEA did not increase
the yield (entry 3, 58%), similar to our observations
for hypervalent arylsiloxanes.2b A brief screening of
solvents (Table 2) showed that methylene chloride
(entry 1, 69%) and DMF (entry 2, 58%) are preferred
over 1,4-dioxane (entry 3, 11%).
3. Lam, P. Y. S.; Vincent, G.; Clark, C. G.; Deudon, S.;
Jadhav, J. K. Tetrahedron Lett. 2001, 42, 3415–3418.
4. For
a solid-phase version of N-arylation, see: (a)
Combs, A. P.; Tadesse, S.; Rafalski, M.; Lam, P. Y. S.
J. Combinatorial Chem. 2002, 4, 179–182; (b) Combs,
A. P.; Rafalski, M. J. Combinatorial Chem. 2000, 2,
29–32; (c) Combs, A. P.; Saubern, S.; Rafalski, M.;
Lam, P. Y. S. Tetrahedron Lett. 1999, 40, 1623–1626.
5. For S-arylation see: (a) Herradura, P. S.; Pendola, K.
A.; Guy, R. K. Org. Lett. 2000, 2, 2019–2022. For
O-arylation see: (b) Evans, D. A.; Katz, J. L.; Peter-
son, G. S.; Hintermann, T. J. Am. Chem. Soc. 2001,
123, 12411–12413; (c) Simon, J.; Salzbrunn, S.;
Prakash, G. K. S.; Petasis, N. A.; Olah, G. A. J. Org.
Chem. 2001, 66, 633–634; (d) Decicco, C. P.; Song, Y.;
Evans, D. A. Org. Lett. 2001, 3, 1029–1032; (e)
Petrassi, H. M.; Sharpless, K. B.; Kelly, J. W. Org.
Lett. 2001, 3, 139–142; (f) Jung, M. E.; Lazarova, T. I.
J. Org. Chem. 1999, 64, 2976–2977. For N-arylation
see: (g) Collot, V.; Bovy, P. R.; Rault, S. Tetrahedron
Lett. 2000, 41, 9053–9057; (h) Mederski, W. W. K. R.;
Lefort, M.; Germann, M.; Kux, D. Tetrahedron 1999,
55, 12757–12770; (i) Cundy, D. J.; Forsyth, S. A. Tet-
rahedron Lett. 1998, 39, 7979–7982.
A number of other NH-containing substrates can be
arylated at room temperature (Table 3).14 4-tert-Butyl-
aniline (entry 2) 4 gave 80% yield of 5. Picolinamide
6 can be N-phenylated to 7 (entry 3, 72%) assisted by
an a-nitrogen activating effect.2a,15 2-Pyridinone 8
(entry 4, 77%) easily undergoes N-arylation to 9.16
Finally mono- and bis-arylation products 11a and 11b
(entry 5) were obtained from sulfonamide 10 in 48%
yield (5:1). Water does not interfere with the reaction
as the commercial solution of TBAF in THF contains
5% of water. An advantage of this method is that
phenols or biphenyl ethers were never detected as side
products, in contrast to the arylboronic acid cross-
coupling.1
6. Antilla, J. C.; Buchwald, S. L. Org. Lett. 2001, 3,
2077–2079.
7. (a) Collman, J. P.; Zhong, M.; Zheng, L.; Costanzo, S.
J. Org. Chem. 2001, 66, 1528–1531; (b) Collman, J. P.;
Zhong, M.; Zheng, L.; Costanzo, S. J. Org. Chem.
2001, 66, 7892–7897; (c) Collman, J. P.; Zhong, M.
Org. Lett. 2000, 2, 1233–1236.
8. (a) Arnauld, T.; Barton, D. H. R.; Doris, E. Tetra-
hedron 1997, 53, 4137–4144; (b) Fedorov, A. Y.; Finet,
J.-P. Tetrahedron Lett. 1998, 39, 7979–7982.
In summary, we have discovered the copper-promoted
CꢀN bond cross-coupling with hypervalent phenyl-
stannane at room temperature.17 The large number of
arylstannane reagents available commercially makes
this new arylating agent a good complement to aryl-
boronic acids, arylsiloxanes and other organometal-
loids. We continue to explore the scope and
mechanism of this powerful copper-promoted C-het-
eroatom cross-coupling with organometalloids.
9. Lopez-Alvarado, P.; Avendano, C.; Menendez, J. C. J.
Org. Chem. 1995, 60, 5678–5682.
10. Kang, S.-K.; Lee, S.-H.; Lee, D. Synlett 2000, 1022–
1024.
11. (a) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem.
1999, 576, 126–145; (b) Hartwig, J. F. Angew. Chem.,
Int. Ed. 1998, 37, 2046–2067.
Acknowledgements
We thank Dr. Paul S. Anderson and Dr. Ruth R.
Wexler for their support of this research and Dr.
Dominic M. T. Chan and Professor David A. Evans
for helpful discussions.
12. Grasa, G. A.; Nolan, S. P. Org. Lett. 2001, 3, 119–122.
13. Representative procedure for 1-ethyl-3-phenyl-2-benzim-
idazolinone 3: To a 20 mL vial was added in sequence:
3 mL of dry dichloromethane, trimethylphenylstannane
(121 mL, 0.667 mmol, 2.0 equiv.), 1-ethyl-2-benzimida-
zolinone (54 mg, 333 mmol, 1.0 equiv.), cupric acetate
(66.7 mg, 0.367 mmol, 1.1 equiv.) and TBAF (0.67 mL
of 1 M solution in THF, 0.667 mmol, 2.0 equiv.). The
reaction was allowed to stir under air at room tempera-
ture for 48 h. The reaction was quenched with a solu-
tion of 2 mL of NH3 in MeOH (2 M). The solvent was
evaporated under reduced pressure and the residue was
dissolved in 3 mL of dichloromethane and purified by
silica gel chromatography (eluent: 7% methanol/chloro-
form) to give 54.6 mg (69%) of 1-ethyl-3-phenyl-2-benz-
imidazolinone 3. MS (AP) m/z 239.4 (25%) (M+H)+,
477.3 (100%) (2M+H)+; 1H NMR (CDCl3) 7.54–7.49
(m, 4H), 7.39 (t, J=6 Hz, 1H), 7.17–7.03 (m, 4H), 6.96
(q, J=7.3 Hz, 2H), 1.41 (t, J=7.1 Hz) ppm; HRMS
calcd for C15H15N2O (M+H)+ m/e 239.1184, found m/e
239.1196.
References
1. (a) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams,
J.; Averill, K.; Chan, D. M. T.; Combs, A. P. Synlett
2000, 674–676; (b) Lam, P. Y. S.; Clark, C. G.;
Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M.
T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941–2944;
(c) For related O-arylation see: Evans, D. A.; Katz, J.
L.; West, T. R. Tetrahedron Lett. 1998, 39, 2937–2940;
(d) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.;
Winters, M. P. Tetrahedron Lett. 1998, 39, 2933–2936.
2. (a) Lam, P. Y. S.; Deudon, S.; Hauptman, E.; Clark,
C. G. Tetrahedron Lett. 2001, 42, 2427–2429; (b) Lam,
P. Y. S.; Deudon, S.; Kristin, M. A.; Li, R.; He, M.;
DeShong, P.; Clark, C. G. J. Am. Chem. Soc. 2000,
122, 7600–7601.