Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC08936H
COMMUNICATION
Journal Name
1
a) B. Schetter and R. Mahrwald, Angew. Chem. Int. Ed., 2006,
45, 7506-7525; b) T. Kobayashi, Y. Kon, H. Abe and H. Ito,
Org. Lett., 2014, 16, 6397–6399; c) M. Tian, M. Yan and P. S.
Baran, J. Am. Chem. Soc., 2016, 138, 14234–14237; d) I. Shin,
S. Hong and M. J. Krische, J. Am. Chem. Soc., 2016, 138
,
14246–14249.
C. Palomo, M. Oiarbide, J. Garcia, Chem. Soc. Rev., 2004, 33
65–75.
2
3
,
For selected papers about the Mukaiyama aldol reaction,
see: a) T. Mukaiyama, K. Narasaka and K. Banno, Chem. Lett.,
1973, 1011–1014; b) H. Groger, E. M. Volg and M. Shibasaki,
Chem. Eur. J., 1998, 47, 1137–1141; c) R. Mahrwald, Chem.
Rev., 1999, 99, 1095–1120; d) B. M. Trost and C. S. Brindle,
Chem. Soc. Rev., 2010, 39, 1600–1632; e) J.-I. Matsuo and M.
Murakami, Angew. Chem. Int. Ed., 2013, 52, 9109–9118.
a) A. T. Nielsen, J. Am. Chem. Soc., 1957, 79, 2518–2524. b)
A. Córdova, W. Notz, and C. F. Barbas III, J. Org. Chem., 2002,
67, 301–303. c) S. E. Denmark and T. Bui, Proc. Natl. Acad.
Sci. USA, 2004, 101, 5439–5444.
Scheme 5. Further chemoselective transformation of the obtained benzyl silyl
ethers.
4
5
reaction paths via a β-siloxy aldehyde (
carbocation intermediate ( ; route ) are proposed. If the
reaction proceeds through , the corresponding TES-protected
alcohol (10) should be obtained by the reaction of using the
TES-derived silyl enol ether (2b). Because we have never
detected 10 in the reaction mixture, route might be the
probable pathway. In the present reaction using an aromatic
aldehyde as the substrate, the product could be produced as
short-lived intermediate in the reaction media and
instantaneously masked (protected) by the SiOTf and 2,2’-
bipyridyl to give without any over-reaction with
3; route a) and a
D
b
a) S. E. Denmark, and K. Ghosh, Angew. Chem. Int. Ed., 2001,
40, 4759–4762; b) S. E. Denmark and T. Bui, J. Org. Chem.,
2005, 70, 10190–10193. c) S. E. Denmark and T. Bui, J. Org.
Chem., 2005, 70, 10393–10399.
D
8
a
6
7
D. W. C. MacMillan, A. B. Northrup, Science, 2004, 305
1752–1755.
,
a) M. Boxer and H. Yamamoto, J. Am. Chem. Soc., 2006, 128
,
3
48–49; b) M. Boxer and H. Yamamoto, J. Am. Chem. Soc.,
2007, 129, 2762–2763; c) J. Saadi, M. Akakura and H.
Yamamoto, J. Am. Chem. Soc., 2011, 133, 14248–14251; d) P.
a
B
2.
B. Brady and H. Yamamoto, Angew. Chem. Int. Ed., 2012, 51
,
The products, obtained by the present reaction, possesses the
benzyl silyl ether moiety within the molecule, which was easily
and chemoselectively activated by FeCl3 or FeBr3.12 The siloxy
moiety of 3aa could be transformed by iron-catalyzed
nucleophilic substitutions in the presence of TMSN3 or
allylTMS to give the corresponding products (11a and 11b) in
good yields (Scheme 5). 7a bearing two kinds of siloxy
functionalities was chemoselectively converted by the
treatment with TMSN3 to the azido product (11c) via the FeBr3-
catalyzed chemoselective transformation of only the benzylic
siloxy moiety.
1942–1946; e) A. Izumiseki and H. Yamamoto, J. Am. Chem.
Soc., 2014, 136, 1308–1311; f) P. B. Brady, S. Oda and H.
Yamamoto, Org. Lett., 2014, 16, 3864–3867; g) W. Gati and
H. Yamamoto, Chem. Sci., 2016, 7, 394–399.
8
9
a) Y. Hayashi, T. Itoh, S. Aratake and H. Ishikawa, Angew.
Chem. Int. Ed., 2008, 47, 2082–2084; b) Y. Hayashi, D.
Sakamoto and D. Okamura, Org. Lett., 2016, 18, 4–7.
a) L. Lin, K. Yamamoto, S. Matsunaga and M. Kanai, Angew.
Chem. Int. Ed., 2012, 51
Yamamoto, S. Matsunaga and M. Kanai, Chem. Asian J.,
2013, , 2974–2983; c) L. Lin, K. Yamamoto, H. Mitsunuma,
, 10275–10279; b) L. Lin, K.
8
Y. Kanazaki, S. Matsunaga and M. Kanai, J. Am. Chem. Soc.,
2015, 137, 15418–15421.
10 a) H. Fujioka, Y. Sawama, N. Murata, T. Okitsu, O. Kubo, S.
Matsuda and Y. Kita, J. Am. Chem. Soc., 2004, 126, 11800–
11801; b) H. Fujioka, T. Okitsu, Y. Sawama, N. Murata, R. Li
and Y. Kita, J. Am. Chem. Soc., 2006, 128, 5930–5938; c) H.
Fujioka, K. Yahata, T. Hamada, O. Kubo, T. Okitsu, Y. Sawama,
In conclusion, we have developed the aromatic aldehyde-
selective aldol reaction using silyl enol ethers derived from
aliphatic aldehydes via two kinds of pyridinium salt
intermediates. The different electrophilicities between the
aromatic and aliphatic pyridinium salts intermediates enable
the suppression of the over-reaction. The obtained reaction
intermediates and products could be continuously and easily
modified into the highly-functionalized compounds. The
unprecedented and chemoselective transformations are useful
to develop a novel strategy for synthesis of the target
molecules.
T. Ohnaka, T. Maegawa and Y. Kita, Chem. Asian J., 2012, 7,
367–373.
11 The pyridinium-type salt intermediate derived from decanal
(intermediate
allyl-Bpin.
C, Scheme 2) also reacted with TMSCN and
12 a) Y. Sawama, S. Nagata, Y. Yabe, K. Morita, Y. Monguchi and
H. Sajiki, Chem. Eur. J., 2012, 18, 16608–16611; b) Y.
Sawama, Y. Shishido, T. Yanase, K. Kawamoto, R. Goto, Y.
Monguchi and H. Sajiki, Angew. Chem. Int. Ed., 2013, 52
,
This study was partially supported by a Grant-in-Aid for JSPS
Research Fellows from the Japan Society for the Promotion of
Science (JSPS, Number: 17J08551 for T. K.).
1555–1559; c) Y. Sawama, Y. Shishido, T. Kawajiri, R. Goto, Y.
Monguchi and H. Sajiki, Chem. Eur. J., 2014, 20, 510–516; d)
Y. Sawama, R. Goto, S. Nagata, Y. Shishido, Y. Monguchi and
H. Sajiki, Chem. Eur. J., 2014, 20, 2631–2636; e) Y. Sawama,
T. Kawajiri, S. Asai, N. Yasukawa, Y. Shishido, Y. Monguchi
and H. Sajiki, J. Org. Chem., 2015, 80, 5556–5565. f) Y.
Sawama in New Horizons of Process Chemistry -Scalable
Reactions and Technologies-, (Eds.; K. Tomioka, T. Shioiri and
H. Sajiki), Springer Nature, 2017, 51–63.
Conflicts of interest
There are no conflicts to declare.
Notes and references
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins