Mao et al.
31 2 3
29.9, 137.1, 141.8, 143.5; HRMS (APCI) calcd for C25H N O S
1
+
(
M + H ) 363.1737, found 363.1744.
Characterization of 2a: white solid (1.12 g); 70% yield;
2
0
1
mp 36-38 °C; [R]
D 3 3
) -38.21 (c 0.62, CHCl ); H NMR (CDCl )
δ 0.74 (d, J ) 6.8 Hz, 3H), 1.85 (s, 3H), 2.41 (s, 3H), 2.86-
2
.91 (m, 1H), 3.04 (t, J ) 6.8 Hz, 1H), 3.24 (t, J ) 11.4 Hz,
H), 3.54-3.57 (m, 1H), 4.52 (d, J ) 6.8 Hz, 1H), 7.01-7.03
1
(
m, 2H), 7.25-7.27 (m, 5H), 7.32-7.37 (m, 3H), 7.40-7.44 (m,
1
3
2
2
1
3
H), 7.59 (d, J ) 8.4 Hz, 2H); C NMR (CDCl ) δ 12.7, 22.2,
FIGURE 2. Proposed trivalent binding modes of the Zn with
and 11b, respectively.
9.5, 43.9, 64.4, 67.8, 77.0, 126.9, 127.7, 128.6, 128.8, 129.0,
4
29.2, 130.2, 137.4, 137.9, 143.8; HRMS (APCI) calcd for
+
25
C H
29
N
2
O
3
S (M - H ) 437.1904, found 437.1887.
transition states, strongly increasing the probability of
an efficient chirality transfer.18
Characterization of 2b: white solid; 75% yield (1.20 g);
20
1
mp 188-189 °C; [R]
D 3
) +30.23 (c 0.63, CHCl ); H NMR
(
3
CDCl ) δ 0.52 (d, J ) 4.0 Hz, 3H), 2.04 (s, 3H), 2.44 (s, 3H),
2
)
.85-2.89 (m, 1H), 3.16-3.21 (m, 1H), 3.54 (s, 1H), 3.71 (t, J
Conclusion
6 Hz, 1H), 4.23 (d, J ) 8.0 Hz, 1H), 4.48 (br, 1H), 5.05 (br,
In summary, we have successfully prepared a new class
of stable sulfamide-amine alcohol ligands from (-)-
ephedrine, (+)-pseuoephedrine, and L-prolinol, which
were designed using a grafting strategy, for the enantio-
selective addition of diethylzinc to a wide range of
aldehydes at room temperature. These ligands provide
high yields and excellent enantioselectivities for both
1H), 7.13 (t, J ) 4.0 Hz, 2H), 7.26-7.35 (m, 10H), 7.72 (d, J )
1
3
8
6
1
4
.0 Hz, 2H); C NMR (CDCl
3
) δ 10.8, 22.2, 30.1, 45.4, 64.5,
8.1, 75.8, 127.8, 128.0, 128.5, 129.0, 129.4, 130.4, 137.6, 138.6,
+
42.5, 144.1; HRMS (APCI) calcd for C25
29 2 3
H N O S (M - H )
37.1904, found 437.1876.
Characterization of 2c: white solid; 78% yield; mp 118-
25
1
1
(
D 3 3
19 °C; [R] ) +21.67 (c 0.5, CHCl ); H NMR (CDCl ) δ 0.63
d, J ) 6.4 Hz, 3H), 2.13 (s, 3H), 2.42 (s, 3H), 2.88-2.91 (m,
aromatic and aliphatic or R,â-unsaturated aldehydes in
1H), 3.10-3.20 (m, 1H), 3.58 (s, 1H), 4.56-4.57 (d, J ) 5.2
Hz, 1H), 6.97-6.98 (d, J ) 3.6 Hz, 2H), 7.23-7.34 (m, 10H),
i
the absence of Ti(O Pr)
4
. The products with enantiomeric
1
3
7
3
1
3
.64-7.66 (d, J ) 8.0 Hz, 2H); C NMR (CDCl ) δ 10.6, 21.7,
excess up to >99% and either absolute configuration were
obtained by using ligands 4 and 11b, respectively. The
preparation of the ligands and their use in the asym-
metric addition of diethylzinc to aldehydes is practical
and could be amenable to scale-up.19 Further work is in
progress in this laboratory with the aim of expanding
applications of these inexpensive chiral ligands to other
enantioselective catalytic processes.
5.3, 44.3, 58.6, 65.8, 76.4, 126.5, 127.3, 127.88, 128.0, 128.3,
28.4, 128.7, 129.7, 137.5, 138.2, 143.1, 143.3; HRMS (APCI)
+
calcd for C25
H
31 2
N O
3
S (M + H ) 439.2050, found 439.2074.
Characterization of 2d: white solid; 60% yield; mp 150-
25
1
1
(
D 3 3
51 °C; [R] ) +67.98 (c 0.5, CHCl ); H NMR (CDCl ) δ 0.44
d, J ) 6.0 Hz, 3H), 2.17-2.43 (m, 6H), 2.64 (s, 1H), 3.17-
3.21 (m, 1H), 3.62 (d, J ) 45.6 Hz, 2H), 4.22 (d, J ) 9.2 Hz,
1H), 5.02 (br, 1H), 7.09-7.29 (m, 13H), 7.67 (d, J ) 7.2 Hz,
1
3
1
1
1
3
H); C NMR (CDCl ) δ 8.7, 21.7, 33.1, 45.8, 59.8, 66.6, 74.8,
27.3, 127.4, 127.9, 128.4, 128.5, 129.2, 129.5, 129.9, 137.0,
38.2, 143.1, 143.6; HRMS (APCI) calcd for C25 S (M
Experimental Section
31 2 3
H N O
+
+
H ) 439.2050, found 439.2030.
Characterization of 3: white solid; 90% yield; mp 75-76
General Procedure for Preparation of Sulfamide-
Amine Alcohols 1-4 and 9-11. (-)-Ephedrine 5 ((+)-
pseudoephedrine 6 or L-prolinol 8) (3.80 mmol) and the
2
5
1
°
C; [R]
1.08 (m, 6H), 1.60 (d, J ) 6.0 Hz, 3H), 2.21 (d, J ) 11.6 Hz,
H), 2.33-2.37 (m, 4H), 2.76-2.85 (m, 2H), 4.52 (d, J ) 7.2
Hz, 1H), 7.19 (d, J ) 8.0 Hz, 2H), 7.29-7.31 (m, 2H), 7.36 (d,
D 3 3
) -48.15 (c 0.5, CHCl ); H NMR (CDCl ) δ 1.02-
12
corresponding aziridine 12 (3.66 mmol) were dissolved in dry
acetonitrile (30 mL), and the mixture was stirred under reflux
for 40 h. The solvent was evaporated under reduced pressure.
The residue was recrystallized with dichloromethane and
petroleum ether and gave the pure ligand.
2
1
3
J ) 4.4 Hz, 7H), 7.38-7.46 (m, 1H), 7.40-7.45 (m, 4H);
NMR (CDCl ) δ 9.9, 19.4, 21.6, 34.5, 46.6, 61.7, 65.1, 76.1,
126.4, 127.4, 128.2, 128.9, 129.5, 136.9, 143.2; HRMS (APCI)
C
3
2
5
Characterization of 1a: sticky oil (0.93 g), 70% yield; [R]
D
+
1
calcd for C20
29 2 3
H N O S (M + H ) 377.1893, found 377.1908.
)
3 3
-10.85 (c 0.5, CHCl ); H NMR (CDCl ) δ 1.00 (d, J ) 6.8
Characterization of 4: white solid; 80% yield; mp 39-40
Hz, 3H), 1.95 (s, 3H), 2.40 (s, 3H), 2.46 (d, J ) 15.2 Hz, 2H),
2
5
1
°
D 3 3
C; [R] ) -59.48 (c 0.5, CHCl ); H NMR (CDCl ) δ 0.95 (d,
2
.70-2.73 (m, 1H), 2.80-2.82 (t, J ) 5.6 Hz, 2H), 4.58 (d, J )
J ) 6.4 Hz, 3H), 1.60 (s, 3H), 2.28-2.35 (m, 2H), 2.38 (m, 3H),
2.60-2.72 (m, 2H), 3.03-3.07 (t, J ) 8.2 Hz, 2H), 4.50 (d, J )
6
.8 Hz, 1H), 7.23-7.31 (m, 4H), 7.33-7.37 (m, 2H), 7.55 (d, J
1
3
)
3
8.0 Hz, 2H); C NMR (CDCl ) δ 9.3, 21.6, 36.3, 40.2, 53.4,
6
.8 Hz, 1H), 7.06 (d, J ) 6.8 Hz, 2H), 7.17-7.27 (m, 7H), 7.35
6
1
4.3, 75.7, 126.3, 127.1, 127.9, 128.57, 128.61, 136.9, 143.2,
13
+
(d, J ) 7.2 Hz, 1H), 7.40-7.45 (m, 4H); C NMR (CDCl ) δ
43.3; HRMS (APCI) calcd for C25
H
27
N
2
O
3
S (M + H ) 363.1737,
3
9
1
.9, 21.6, 35.2, 39.8, 52.4, 59.0, 64.8, 75.8, 126.4, 126.5, 127.4,
found 363.1718.
28.1, 128.5, 128.8, 129.6, 129.6, 136.8, 137.6, 143.2; HRMS
Characterization of 1b: white solid; 85% yield; mp 117-
+
2
5
1
(APCI) calcd for C26
53.2220.
H
33
N
O
2 3
S (M + H ) 453.2206, found
1
18 °C; [R]
D 3 3
) +56.37 (c 0.5, CHCl ); H NMR (CDCl ) δ
4
0
.63-0.66 (m, 3H), 2.16 (s, 3H), 2.43-2.48 (m, 4H), 2.53-2.55
Characterization of 9: white solid; 97% yield. mp 109-
(
m, 1H), 2.61-2.66 (m, 1H), 3.07-3.09 (s, 2H), 4.17-4.21 (m,
2
6
1
1
3
110 °C; [R]
D 3 3
) -79.30 (c 0.5, CHCl ); H NMR (CDCl ) δ
1
H), 7.26-7.33 (m, 7H), 7.77-7.80 (m, 2H); C NMR (CDCl
3
)δ
1
.30-1.44 (m, 1H), 1.53 (d, J ) 4.0 Hz, 2H), 1.71 (d, J ) 8.0
7
.8, 21.7, 36.1, 41.1, 52.8, 65.4, 75.0, 127.4, 127.5, 128.1, 128.5,
Hz, 1H), 1.76-1.87 (m, 1H), 2.29-2.35 (m, 2H), 2.40 (s, 3H),
2
1
.58-2.63 (m, 2H), 2.73 (d, J ) 4.0 Hz, 1H), 3.06-3.10 (m,
H), 3.33-3.36 (m, 3H), 3.52-3.56 (m, 1H), 7.12 (d, J ) 8.0
(
18) (a) Yamakawa, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117,
6
327-6335. (b) Kitamura, M.; Suga, S.; Oka, H.; Noyori, R. J. Am.
13
Hz, 2H), 7.18-7.27 (m, 5H), 7.75 (d, J ) 8.0 Hz, 2H); C NMR
Chem. Soc. 1998, 120, 9800-9809. (c) Rasmussen, T.; Norrby, P.-O.
J. Am. Chem. Soc. 2003, 125, 5130-5138. (d) Goldfuss, B.; Houk, K.
N. J. Org. Chem. 1998, 63, 8998-9006. (e) Goldfuss, B.; Steigelmann,
M.; Khan, S. I.; Houk, K. N. J. Org. Chem. 2000, 65, 77-82.
(CDCl
3
) δ 21.6, 23.8, 27.3, 40.6, 54.1, 54.3, 58.0, 63.7, 64.7,
126.5, 127.4, 128.5, 129.6, 137.4, 137.7, 143.2; HRMS (APCI)
+
calcd for C21
29 2 3
H N O S (M + H ) 389.1893, found 389.1880.
(19) For a current state of the art catalyst for the addition of
2
6
Characterization of 10: sticky oil; 90% yield; [R]
D
)
diethylzinc to benzaldehyde with excellent yield and enantiomeric
excess on scale, see: Kitamura, M.; Oka, H.; Suga, S.; Noyori, R. Org.
Synth. 2003, 79, 139-145.
1
-67.85 (c 0.5, CHCl
3 3
); H NMR (CDCl ) δ 1.14 (d, J ) 6.4 Hz,
3H), 1.38-1.55 (m, 1H), 1.57-1.61 (m, 2H), 1.77 (d, J ) 8.8
9126 J. Org. Chem., Vol. 69, No. 26, 2004