ChemCatChem
10.1002/cctc.201601238
FULL PAPER
results in a more electrophilic silicon atom in Et
3
SiH (see
S. Rayner , D. Sarewitz Nature 2007, 445, 597-598; d) K. P. Shine, W.
T. Sturges, Science 2007, 315, 1804-1805; e) A. Peterson, K. A.
Thoreson, K. McNeill, Organometallics 2009, 28, 5982-5991; f) E. J.
Pelton, D. A. Blank, K. McNeill, Dalton Trans. 2013, 42, 10121-10128;
g) R. Baumgartner, G. K. Stieger, K. McNeill, Environ. Sci. Technol.
Scheme 6 for CH
bound species of silylium-like character are generated, which
can initiate C-Cl bond cleavage reaction to give the
chlorosilane and formally surface bound hydride. The
generated carbenium-like species might react with the latter or
initiates Friedel-Crafts reaction. However, reverse
3
Cl). As a result of this polarization, surface-
a
a
2013, 47, 6545-6553; h) D. Sadowsky, K. McNeill, C. J. Cramer,
Environ. Sci. Technol. 2014, 48, 10904-10911; i) M. Peplow, ACS Cent.
Sci. 2016, 2, 4-5.
a
a
mechanism is also conceivable, which involves an initial
formation of a carbenium ion by C-Cl bond cleavage and a
subsequent reaction with a silane or benzene. For the reactions
without silane we suggest a similar C-Cl activation, and Friedel-
Crafts reaction pathway to give the C-C-coupling product and
[4]
a) B. Coq, G. Ferrat, F. Figueras, J. Catal. 1986, 101, 434-445; b) C. A.
Marques, M. Selva, P. Tundo, J. Org. Chem. 1994, 59, 3830-3837; c) M.
Makkee, A. Wiersma, E. J. A. X. van de Sandt, H. van Bekkum, J. A.
Moulijn, Catal. Today 2000, 55, 125-137; d) R. M. Rioux, C. D.
Thompson, N. Chen, F. H. Riberio, Catal. Today 2000, 62, 269-278; e)
C. D. Thompson, R. M. Rioux, N. Chen, F. H. Ribeiro, J. Phys. Chem. B
1
6
®
HCl (see Scheme 7). Note, that a PulseTA experiment which
involved alternating treatment of the surface with benzene,
2000, 104, 3067-3077; f) N. Chen, R. M. Rioux, F. H. Ribeiro, J. Catal.
002, 211, 192-197; g) Z. M. De Pedro, J. A. Casas, L. M. Gomez-
2
CH
3
Cl and again benzene indicated that both substrates can be
Sainero, J. J. Rodriguez, Appl. Catal. B 2010, 98, 79-85; h) M. A.
Álvarez-Montero, L. M. Gómez-Sainero, A. Mayoral, I. Diaz, R. T. Baker,
J. J. Rodriguez, J. Catal. 2011, 279, 389-396.
adsorbed at the same time (see Figure 2).
[5]
a) S. Deshmukh, J. L. d´Itri, Catal. Today 1998, 40, 377-385; b) K. Early,
V. I. Kovalchuk, F. Lonyi, S. Deshmukh, J. L. d’Itri, J. Catal. 1999, 182,
Conclusions
219-227; c) H. Berndt, H. B. Zadeh, E. Kemnitz, M. Nickkgo-Amiry, M.
Pohl, T. Skapin, J. M. Winfield, J. Mater. Chem. 2002, 12, 3499-3507;
c) M. Feist, I. K. Murwani, E. Kemnitz, J. Therm. Anal. Cal. 2003, 72,
75-82; d) H. P. Aytam, V. Akula, K. Janmanchi, S. R. R.Kamaraju, K. R.
Panja, J. Phys. Chem. B 2002, 106, 1024-1031; f) Z. Karpiński, J. L.
d’Itri, Catal. Lett. 2001, 77,135-140; g) M. A. Keane, ChemCatChem
In summary, we have demonstrated that nanoscopic aluminium
fluorides, such as aluminium chlorofluoride (ACF) and high
surface-aluminium fluoride (HS-AlF
the activation of C-Cl bonds in the presence of Et
3
) are suitable catalysts for
SiH under mild
3
reaction conditions. The C-Cl bonds are converted either into
C-H bonds via hydrodehalogenation reactions or into C-C bonds
via Friedel-Crafts type reactions. In the absence of silane,
classical Friedel-Crafts reactions take place. Differences
[6]
3
between ACF and HS-AlF are mainly due to different porosities
in both catalysts (micro- vs. mesoporosity).
B 2012, 111-112, 309-316; e) M. Bonarowska, O. Machynskyy, D.
The Graduate School, School of Analytical Sciences Adlershof,
[7]
“
SALSA” which is funded by the Excellence Initiative of the
Deutsche Forschungsgemeinschaft (DFG) is gratefully
acknowledged. Furthermore, we thank research training group
GRK 1582 “Fluorine as a Key Element”.
2
A
2
Keywords: heterogeneous catalysis, silane, activation of
Intermed. 2015, 41, 9267-9280; f) Y. Han, G. Gu, J. Sun, W. Wang, H.
Wan, Z. Xu, S. Zheng, Appl. Surf. Sci. 2015, 355, 183-190; g) Y. Han, J.
Sun, H. Fu, X. Qu, H. Wan, Z. Xu, S. Zheng, Appl. Catal., A 2016, 519,
chlorinated compounds
1
-6.
[
1]
2]
a) R. A. Sheldon, Chem. Ind. (Lond.) 1992, 23, 903-906; b) P. J.
Harrington, E. Lodewijk, Org. Process Res. Develop. 1997, 1, 72-76; c)
M. L. Kantam, K. V. S. Ranganath, M. Sateesh, K. B. S. Kumar, B. M.
Choudary, J. Mol. Catal. A: Chem. 2005, 225, 15-20; d) N. Candu, S.
Wuttke, E. Kemnitz, S. M. Coman, V. I. Parvulescu, Appl. Catal. A 2011,
[
[
[
8]
G. Lázaro, V. Polo, F. J. Fernández-Alvarez, P. García-Orduña, F. J.
Lahoz, M. Iglesias, J. J. Pérez-Torrente, L. A. Oro, ChemSusChem
2
015, 8, 495-503.
a) M. Ahrens, G. Scholz, T. Braun, E. Kemnitz, Angew. Chem. Int. Ed.
013, 125, 5436-544; B. Calvo, J. Wuttke, T. Braun, E. Kemnitz,
ChemCatChem. 2016, 8, 1945-1950.
9]
2
391, 169-174.
[
a) T. Cseri, S. Békássy, F. Figueras, E. Cseke, L.-C. de Menorval , R.
10] Note that the TONs will be up to three times higher for polychlorinated
substrates, if TONs would be calculated on the basis of in the reaction
Dutartre, Appl. Catal. A 1995, 132, 141-155; b) A. Corma, Chem. Rev.
1995, 95, 515-529; c) M. A. Harmer, Q. Sun, A. J. Vega, W. E. Farneth,
converted Et
S. Rüdiger, Ch. S. Shekar, Angew. Chem. Int. Ed. 2003, 42, 4251-
254; b) J. K. Murthy, U. Gross, S. Rüdiger, V. V. Rao, V. V. Kumar, A.
Wander, C. L. Bailey, N. M. Harrison, E. Kemnitz, J. Phys. Chem. B
006, 110, 8314-8319; c) M. H. G. Prechtl, M. Teltewskoi, A. Dimitrov,
3 3 3
SiH into Et SiCl; for HS-AlF see: a) E. Kemnitz, U. Groß,
A. Heidekum, W. F. Hoelderich, Green Chem. 2000, 2, 7-14; d) M. A.
Harmer, Q. Sun, Appl. Catal. A 2001, 221, 45-62; e) T. F. Degnan Jr.,
4
A 2003, 256, 3-18; g) M. Kitano, K.
2
Nakajima, J. N. Kondo, S. Hayashi, M. Hara, J. Am. Chem. Soc. 2010,
E. Kemnitz, T.Braun, Chem. Eur. J. 2011, 17, 14385-14388; d) T. Krahl,
Amorphes Aluminiumchlorofluorid und –bromofluorid die stärksten
bekannten festen Lewis-Säuren, Dissertation, Humboldt-Universität zu
Berlin, 2005.
132, 6622−6623; h) G. Sartori, R. Maggi, Chem. Rev. 2011, 111, 181-
214; i) D. A. Simonetti, R. T Carr, E. Iglesia, J. Catal. 2012, 285, 19-30.
[
3]
a) F. S. Rowland, Angew. Chem. Int. Ed. Engl. 1996, 35, 1786-1798;
b) J. S. Fuglestvedt, T. K. Berntsen, O. Godal, R. Sausen, K. P. Shine ,
T. Skodvin, Clim. Change 2003, 58, 267-331; c) R. A. Pielke, G. Prins,
[
11] a) C. D. Nenitzescu, I. P. Cantuniari, Ber. 66 1933, 1097-1100; b) Van
Zandt Williams, Jr., P.R. Schleyer, G. J. Gleicher, L. B. Rodewald, J.
This article is protected by copyright. All rights reserved.