Page 15 of 25
Journal of the American Chemical Society
oligonucleotides. Organic Process Research & Development 2003, 7
(1), 47-52.
35. Eckstein, F., Phosphorothioates, essential components of
53.
Boyer, P. L.; Smith, S. J.; Zhao, X. Z.; Das, K.; Gruber, K.;
Arnold, E.; Burke, T. R.; Hughes, S. H., Developing and evaluating
inhibitors against the RNase H active site of HIV-1 reverse
transcriptase. Journal of Virology 2018, 92 (13), e02203-17.
1
2
3
4
5
6
7
8
therapeutic oligonucleotides. Nucleic Acid Ther 2014, 24 (6), 374-
387.
36.
54.
Zamecnik, P. C.; Stephenson, M. L., Inhibition of Rous
Hudziak, R. M.; Barofsky, E.; Barofsky, D. F.; Weller, D. L.;
sarcoma virus replication and cell transformation by a specific
oligodeoxynucleotide. Proceedings of the National Academy of
Sciences 1978, 75 (1), 280-284.
Huang, S.-B.; Weller, D. D., Resistance of morpholino
phosphorodiamidate oligomers to enzymatic degradation.
Antisense and Nucleic Acid Drug Development 1996, 6 (4), 267-272.
55.
Vickers, T. A.; Koo, S.; Bennett, C. F.; Crooke, S. T.; Dean,
37.
Kurreck, J.; Wyszko, E.; Gillen, C.; Erdmann, V. A., Design
N. M.; Baker, B. F., Efficient reduction of target RNAs by small
interfering RNA and RNase H-dependent antisense agents: a
comparative analysis. Journal of Biological Chemistry 2003, 278
(9), 7108-7118.
of antisense oligonucleotides stabilized by locked nucleic acids.
Nucleic acids research 2002, 30 (9), 1911-1918.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
38.
Prakash, T. P., An overview of sugar-Modified
oligonucleotides for antisense therapeutics. Chemistry
Biodiversity 2011, 8 (9), 1616-1641.
&
56.
RNA
Furdon, P. J.; Dominski, Z.; Kole, R., RNase H cleavage of
hybridized to oligonucleotides containing
39.
Uhlmann, E., Peptide nucleic acids (PNA) and PNA-DNA
methylphosphonate, phosphorothioate and phosphodiester
bonds. Nucleic acids research 1989, 17 (22), 9193-9204.
57.
chimeras: From high binding affinity towards biological function.
Biological chemistry 1998, 379, 1045-52.
Rait, V. K.; Shaw, B. R., Boranophosphates support the
40.
Summerton, J., Morpholino antisense oligomers: the case
RNase H cleavage of polyribonucleotides. Antisense and Nucleic
Acid Drug Development 1999, 9 (1), 53-60.
58.
Chelobanov, B. P.; Fokina, A. A.; Vlassov, V. V.; Altman, S.; Zenkova,
M. A.; Stetsenko, D. A., Mesyl phosphoramidate antisense
oligonucleotides as an alternative to phosphorothioates with
improved biochemical and biological properties. Proceedings of the
National Academy of Sciences 2019, 116 (4), 1229-1234.
for an RNase H-independent structural type. Biochimica et
Biophysica Acta (BBA) - Gene Structure and Expression 1999, 1489
(1), 141-158.
Miroshnichenko, S. K.; Patutina, O. A.; Burakova, E. A.;
41.
Stein, C. A.; Subasinghe, C.; Shinozuka, K.; Cohen, J. S.,
properties of phosphorothioate
Physicochemical
oligodeoxynucleotides. Nucleic Acids Research 1988, 16 (8), 3209-
3221.
42.
Li, P.; Sergueeva, Z.; Dobrikov, M.; Shaw, B., Nucleoside
59.
Noronha, A. M.; Wilds, C. J.; Lok, C.-N.; Viazovkina, K.;
and oligonucleoside boranophosphates: chemistry and properties.
Chemical reviews 2007, 107, 4746-96.
Arion, D.; Parniak, M. A.; Damha, M. J., Synthesis and biophysical
properties of arabinonucleic acids (ANA): circular dichroic spectra,
melting temperatures, and ribonuclease H susceptibility of
ANA/RNA hybrid duplexes. Biochemistry 2000, 39 (24), 7050-
7062.
43.
Pongracz, K.; Gryaznov, S., Oligonucleotide N3′→ P5′
thiophosphoramidates: synthesis and properties. Tetrahedron
letters 1999, 40 (43), 7661-7664.
44.
Wan, W. B.; Migawa, M. T.; Vasquez, G.; Murray, H. M.;
60.
Verbeure, B.; Lescrinier, E.; Wang, J.; Herdewijn, P.,
Nichols, J. G.; Gaus, H.; Berdeja, A.; Lee, S.; Hart, C. E.; Lima, W. F.;
Swayze, E. E.; Seth, P. P., Synthesis, biophysical properties and
biological activity of second generation antisense oligonucleotides
containing chiral phosphorothioate linkages. Nucleic acids research
2014, 42 (22), 13456-13468.
RNase H mediated cleavage of RNA by cyclohexene nucleic acid
(CeNA). Nucleic acids research 2001, 29 (24), 4941-4947.
61.
Mangos, M. M.; Min, K.-L.; Viazovkina, E.; Galarneau, A.;
Elzagheid, M. I.; Parniak, M. A.; Damha, M. J., Efficient RNase H-
directed cleavage of RNA promoted by antisense DNA or 2’F-ANA
constructs containing acyclic nucleotide inserts. Journal of the
American Chemical Society 2003, 125 (3), 654-661.
62.
preclinical pharmacokinetics and pharmacodynamics of
mipomersen (kynamro(®)): second-generation antisense
oligonucleotide inhibitor of apolipoprotein B. Clin Pharmacokinet
2015, 54 (2), 133-146.
63.
45.
Salazar, M.; Fedoroff, O. Y.; Miller, J. M.; Ribeiro, N. S.;
Reid, B. R., The DNA strand in DNA-RNA hybrid duplexes is neither
B-form nor A-form in solution. Biochemistry 1993, 32 (16), 4207-
4215.
Geary, R. S.; Baker, B. F.; Crooke, S. T., Clinical and
46.
Gray, D. M.; Ratliff, R. L.; Vaughan, M. R., Circular
a
dichroism spectroscopy of DNA. In Methods in Enzymology,
Academic Press: 1992; Vol. 211, pp 389-406.
47.
Lesnik, E. A.; Freier, S. M., Relative thermodynamic
Nowotny, M.; Gaidamakov, S. A.; Ghirlando, R.; Cerritelli,
stability of DNA, RNA, and DNA/RNA hybrid duplexes: relationship
with base composition and structure. Biochemistry 1995, 34 (34),
10807-10815.
S. M.; Crouch, R. J.; Yang, W., Structure of Human RNase H1
complexed with an RNA/DNA hybrid: insight into HIV reverse
transcription. Molecular Cell 2007, 28 (2), 264-276.
48.
Hung, S.-H.; Yu, Q.; Gray, D. M.; Ratliff, R. L., Evidence from
64.
Wu, H.; Lima, W. F.; Crooke, S. T., Investigating the
CD spectra that d(purine)-r(pyrimidine) and r(purine)-
d(pyrimidine) hybrids are in different structural classes. Nucleic
Acids Research 1994, 22 (20), 4326-4334.
structure of Human RNase H1 by site-directed mutagenesis.
Journal of Biological Chemistry 2001, 276 (26), 23547-23553.
65.
M. T.; Wyrzykiewicz, T. K.; Bhat, B.; Crooke, S. T., Structural
requirements at the catalytic site of the heteroduplex substrate for
Human RNase H1 catalysis. Journal of Biological Chemistry 2004,
279 (35), 36317-36326.
Lima, W. F.; Nichols, J. G.; Wu, H.; Prakash, T. P.; Migawa,
49.
Zhou, C.; Chattopadhyaya, J., New methylene-bridged
hexopyranosyl nucleoside modified oligonucleotides (BHNA):
synthesis and biochemical studies. Arkivoc 2008, 2009 (3), pp.
171-186.
50.
Clark, C. L.; Cecil, P. K.; Singh, D.; Gray, D. M., CD,
66.
Østergaard, M. E.; Nichols, J.; Dwight, T. A.; Lima, W.; Jung,
absorption and thermodynamic analysis of repeating dinucleotide
DNA, RNA and hybrid duplexes [d/r(AC)]12·[d/r(GT/U)]12 and the
influence of phosphorothioate substitution. Nucleic Acids Research
1997, 25 (20), 4098-4105.
M. E.; Swayze, E. E.; Seth, P. P., Fluorinated nucleotide modifications
modulate allele selectivity of SNP-targeting antisense
oligonucleotides. Mol Ther Nucleic Acids 2017, 7, 20-30.
67.
Frieden, M.; Christensen, S. M.; Mikkelsen, N. D.;
51.
endonuclease. Rna 2004, 10 (11), 1675-9.
52. Hollis, T.; Shaban, N. M., Structure and function of RNase
Lingel, A.; Izaurralde, E., RNAi: finding the elusive
Rosenbohm, C.; Thrue, C. A.; Westergaard, M.; Hansen, H. F.; Ørum,
H.; Koch, T., Expanding the design horizon of antisense
oligonucleotides with alpha-L-LNA. Nucleic acids research 2003, 31
(21), 6365-6372.
H Enzymes. In Ribonucleases, Nicholson, A. W., Ed. Springer Berlin
Heidelberg: 2011; pp 299-317.
15
ACS Paragon Plus Environment