C O M M U N I C A T I O N S
triplet sensitizers.25 We carried out preliminary quantum yield
measurements for the present system using 1a at 3.5 mM in CH3-
CN with 1.5 M CHD. These solutions were illuminated, using a
Xe-lamp/monochromator/radiometer system, at the absorption
maximum of the dye. The Φꢀ values derived from these experi-
ments (630-4500 M-1 cm-1, depending on the dye) are comparable
to, and in the case of PM 546 exceed, those previously reported. It
should be emphasized that these values were obtained at a single
concentration of the acceptor and are thus limited by the efficiency
of singlet quenching by 1. We anticipate that a substantial increase
in these rates can be obtained if the dyes were covalently tethered
to the NAP group or if the photolyses were carried out in
constrained media where the effective concentration of the quencher
is higher. These approaches are currently being explored.
Scheme 2. Photorelease Mechanism
Table 2. Photophysical Parameters of the Photosenstizers21-24
Eox
(V)
Eoo
(V)
λmax
(nm)
ꢀ
τ
(ns)
kq
Φꢀ
1
1
1
dye
(M-1 cm-
)
(109 M-1 s-
)
(M-1 cm-
)
4
5
6
1.22 2.50 493
1.01 2.32 525
1.02 2.65 467
81 000
68 000
54 000
5.6
4.2
3.1
2.8
1.3
7.6
4500
1700
630
Acknowledgment. We would like to thank the National Science
Foundation for their financial support of this work and Prof. N.
Blough for assistance with the quantum yield determinations.
Second, the NAP esters react rapidly with the singlet states of
the three sensitizers. This was established by fluorescence quenching
experiments using NAP ester 1a. Stern-Volmer analysis of these
data, along with literature values for the singlet lifetimes of the
dyes, gives rate constants kq > 109 M-1 s-1 (Table 2).
Supporting Information Available: Transient absorption spectra,
fluorescence data, synthesis, and characterization data for esters 1a-e
data. This material is available free of charge via the Internet at http://
pubs.acs.org.
Third, laser flash photolysis (LFP) experiments show the
formation of the expected radical intermediates. Figure 1 illustrates
References
(1) Reiser, A. In PhotoreactiVe Polymers: The Science and Technology of
Resists; Wiley-Interscience: New York, 1989; pp 178-225.
(2) Yoon, U. C.; Jin, Y. X.; Oh, S. W.; Park, C. H.; Park, J. H.; Campana, C.
F.; Cai, X.; Duesler, E. N.; Mariano, P. S. J. Am. Chem. Soc. 2003, 125,
10664-10671.
(3) Griesbeck, A. G.; Heinrich, T.; Oelgemoller, M.; Lex, J.; Molis, A. J.
Am. Chem. Soc. 2002, 124, 10972-10973.
(4) Pelliccioli, A. P.; Wirz, J. Photochem. Photobiol. Sci. 2002, 441-458.
(5) Il’ichev, Y. V.; Schwoerer, M. A.; Wirz, J. J. Am. Chem. Soc. 2004, 126,
4581-4595.
(6) Corrie, J. E. T.; Trentham, D. R. In Caged Nucleotides and Neurotrans-
mitters; Morrison, H., Ed.; Wiley: New York, 1993; Vol. 2, pp 243-
305.
(7) Misra, A.; Tripathi, S.; Misra, K. Ind. J. Chem., Sect. B 2002, 41, 1454-
1459.
(8) Pirrung, M. C.; Fallon, L.; Lever, D. C.; Shuey, S. W. J. Org. Chem.
1996, 61, 2129-2136.
Figure 1. Transient absorption spectra of PM 546 with 1a.
(9) Givens, R. S.; Weber, J. F. W.; Conrad, P. G., II; Orosz, G.; Donahue, S.
L.; Thayer, S. A. J. Am. Chem. Soc. 2000, 122, 2687-2697.
(10) Atemnkeng, W. N.; Louisiana, L. D., II; Yong, P. K.; Vottero, B.; Banerjee,
A. Org. Lett. 2003, 5, 4469-4471.
such an experiment carried out with PM 546 and ester 1a.
Immediately following the laser pulse (355 nm, 10 ns, 10-20 mJ),
we detect a sharp transient absorption band at ca. 410 nm, along
with a negative signal corresponding to photobleaching of the dye.
We also generated the cation radical of PM 546 by using
pyromellitic dianhydride as the acceptor and observed a transient
signal that was nearly identical to that derived from 1a, along with
the known signal for the acceptor anion radical at 660 nm.20 LFP
experiments with PM 597 give similar results (in this case the cation
radical absorbs at 420 nm). Previous LFP experiments on similar
PM dyes gave similar results.21 We were unable to detect a signal
that could be assigned to the coumarin 6 cation radical. It is possible
that this species does not possess an absorption band that is
sufficiently distinct from the starting materials.
The effective rate of a photorelease system can be characterized
by Φꢀ, which is the product of the quantum yield for photorelease
and the molar absorptivity of the light absorbing species. For many
of the nitrobenzyl-based systems, Φꢀ values range from 95 to 300,
depending on the derivative employed.25 A recent report demon-
strates that this can be increased to ca. 2500 using UV-absorbing
(11) Pika, J.; Konosonoks, A.; Robinson, R. M.; Singh, P. N. D.; Gudmunds-
dottir, A. D. J. Org. Chem. 2003, 68, 1964-1972.
(12) Litera´k, J.; Wirz, J.; Kla´n, P. Photochem. Photobiol. Sci. 2005, 4, 43-
46.
(13) Blanc, A.; Bochet, C. G. J. Org. Chem. 2002, 67, 5567-5577.
(14) Banerjee, A.; Falvey, D. E. J. Org. Chem. 1997, 62, 6245-6251.
(15) Banerjee, A.; Lee, K.; Falvey, D. E. Tetrahedron 1999, 55, 12699-12710.
(16) Lee, K.; Falvey, D. E. J. Am. Chem. Soc. 2000, 122, 9361-9366.
(17) Sundararajan, C.; Falvey, D. E. J. Org. Chem. 2004, 69, 5547-5554.
(18) Pavlopoulos, T.; Boyer, J. H. Proc. SPIE- Int. Soc. Opt. Eng. 1994, 2115,
231-239.
(19) Pavlopoulos, T.; Boyer, J. H.; Thangaraj, K.; Sathyamoorthi, G.; Shah,
M. P.; Soong, M. L. Appl. Opt. 1992, 31, 7089-7094.
(20) Drexhage, K. D. Dye Lasers; Springer-Verlag: New York, 1977; Vol. 1.
(21) Jones, G., II; Kumar, S.; Klueva, O.; Pacheco, D. J. Phys. Chem. A 2003,
107, 8429-8434.
(22) Lai, R. Y.; Bard, A. J. J. Phys. Chem. B 2003, 107, 5036-5042.
(23) Jones, G., II; Griffin, S. F.; Choi, C.-y.; Bergmark, W. R. J. Org. Chem.
1984, 49, 2705-2708.
(24) Gould, I. R.; Shukla, D.; Giesen, D.; Farid, S. HelV. Chim. Acta 2001,
84, 2796-2812.
(25) Wo¨ll, D.; Walbert, S.; Stengele, K.-P.; Albert, T. J.; Richmond, T.; Norton,
J.; Singer, M.; Green, R. D.; Pfleiderer, W.; Steiner, U. E. HelV. Chim.
Acta 2004, 87, 28-45.
JA050760F
9
J. AM. CHEM. SOC. VOL. 127, NO. 22, 2005 8001