Z. Zha et al. / Tetrahedron 61 (2005) 2521–2527
2527
References and notes
M.; Sun, L.; Chechik, V.; Yeung, L. K. Acc. Chem. Res. 2001,
4, 181–190. (e) Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T.
3
J. Am. Chem. Soc. 2002, 124, 7642–7643.
1
. For a recent review of the Barbier-type reaction see:
Blomberg, C. The Barbier Reaction and Related One-Step
Processes. In Reactivity and Structure: Concepts in Organic
Chemistry; Hafner, K., Lehn, J. M., Rees, C. W., von Rague
Schleyer, P., Trost, B. M., Zahradnik, R., Eds.; Springer:
Berlin, 1993.
7. (a) Wang, Z. Y.; Zha, Z. G.; Zhou, C. L. Org. Lett. 2002, 4,
1683–1685. (b) Xu, X. L.; Zha, Z. G.; Miao, Q.; Wang, Z. Y.
Synlett 2004, 1171–1174.
8. Wang, L.; Li, P. H.; Wu, Z. T.; Yan, J. C.; Wang, M.; Ding,
Y. B. Synthesis 2003, 2001–2004.
2
. For reviews on Barbier type and other organic reactions in
aqueous media see: (a) Li, C.-J. Chem. Rev. 1993, 93, 2023. (b)
Li, C. J. Tetrahedron 1996, 52, 5643. (c) Li, C. J. Acc. Chem.
Res. 2002, 35, 533. (d) Lubineau, A.; Auge, J.; Queneau, Y.
Synthesis 1994, 741. (e) Yamamoto, Y.; Asao, N. Chem. Rev.
9. The XRD patterns have four characteristic dihedrals: 30.723,
32.080, 44.178 and 45.105, with the relative intensities of 100,
82, 32 and 80%, respectively.
10. Zha, Z.; Xie, Z.; Zhou, C.-L.; Wang, Z.-Y.; Wang, Y.-S. Chin.
J. Chem. 2002, 20, 1477.
1
993, 93, 2207–2293. (f) Lindstrom, U. M. Chem. Rev. 2002,
02, 2751–2772.
11. (a) Chan, T. H.; Li, C. J.; Wei, Z. Y. J. Chem. Soc., Chem.
Commun. 1990, 505–507. (b) Keh, C. C. K.; Wei, C. M.; Li,
C. J. J. Am. Chem. Soc. 2003, 125, 4062–4063.
1
3
. (a) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and
Practice; Oxford University Press: New York, 1997. (b) Ten
Brink, G. J.; Arends, I. W. C. E.; Sheldon, R. A. Science 2000,
12. (a) Zhang, W. C.; Li, C. J. J. Org. Chem. 1999, 64, 3230–3236.
(
b) Li, C. J.; Meng, Y.; Yi, X. H. J. Org. Chem. 1998, 63,
2
87, 1636–1639. (c) Tan, K. T.; Cheng, S. S.; Cheng, H. S.;
7
498–7504. (c) Chan, T. H.; Issac, M. B. Pure Appl. Chem.
996, 68, 919–924. (d) Chan, T. H.; Yang, Y.; Li, C. J. J. Org.
Chem. 1999, 64, 4452–4455.
Loh, T. P. J. Am. Chem. Soc. 2003, 125, 2958–2963. (d) Zha,
Z. G.; Wang, Y. S.; Yang, G.; Zhang, L.; Wang, Z. Y. Green
Chem. 2002, 4, 578–580. (e) Gansauer, A.; Fielenbach, D.;
Stock, C. Adv. Synth. Catal. 2002, 344, 845–848. (f) Li, C. J.
Acc. Chem. Res. 2002, 35, 533–538. (g) Perez, I.; Sestelo, J. P.;
Sarandeses, L. A. J. Am. Chem. Soc. 2001, 123, 4155–4160.
1
1
3. (a) Nokami, J.; Otera, J.; Sudo, T.; Okawara, R. Organo-
metallics 1983, 2, 191–193. (b) Andrews, P. C.; Peatt, A. C.;
Raston, C. L. Tetrahedron Lett. 2002, 43, 7541–7543.
4. (a) Kim, E.; Gordon, D. M.; Schmid, W.; Whitesides, G. M.
J. Org. Chem. 1993, 58, 5500–5507. (b) Kundu, A.; Prabhakar,
S.; Vairamani, M.; Roy, S. Organometallics 1997, 16,
1
(
h) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259–
81.
. (a) Wang, Z. Y.; Yuan, S. Z.; Li, C. J. Tetrahedron Lett. 2002,
2
4
4
796–4799. (c) Law, M. C.; Wong, K. Y.; Chan, T. H.
4
3, 5097–5099. (b) Li, C. J.; Zhang, W. C. J. Am. Chem. Soc.
998, 120, 9102–9103. (c) Weigand, S.; Bruckner, R. Chem.
Green Chem. 2002, 4, 161–164.
5. The formation of a chemical bond between tin atom and a-C is
1
1
Eur. J. 1996, 35, 1077–1084. (d) Kobayashi, S.; Aoyama, N.;
Manabe, K. Synlett 2002, 483–485. (e) Imai, T.; Nishida, S.
Synthesis 1993, 395–399. (f) Imai, T.; Nishida, S. J. Chem.
Soc., Chem. Commun. 1994, 277–278. (g) Nagano, Y.; Orita,
A.; Otera, J. Adv. Synth. Catal. 2003, 345, 643–646. (h)
Masuyama, Y.; Kishida, M.; Kurusu, Y. J. Chem. Soc., Chem.
Commun. 1995, 1405–1406. (i) Ito, A.; Kishida, M.; Kurusu,
Y.; Masuyama, Y. J. Org. Chem. 2000, 65, 494–498. (j) Tan,
X. H.; Shen, B.; Liu, L.; Guo, Q. X. Tetrahedron Lett. 2002,
also possible since the overlap between a doublet and a
1
multiplet can not distinguished from a multiplet in the
NMR spectrum.
H
1
6. Quantum chemistry calculation was performed by applying
GAUSSIAN 98, Revision A.7, Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Scuseria, G. E.; Robb, A.; Cheeseman, J. R.;
Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, Jr, R. E.;
Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.;
Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.;
Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.;
Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui,
Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.
V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox,
D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara,
A.; Gonzalez, C.; Challacombe, M.; Gill, P.M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.;
Head-Gordon, M.; Replogle, E. S.; Pople, J. A.; Gaussian, Inc.,
Pittsburgh PA, 1998. Calculation method: (u)hf/lanl2dz for
geometry optimization and (u) b31yp/lanl2dz for single-point
energy calculation.
4
3, 9373–9376. (k) Tan, X. H.; Shen, B.; Deng, W.; Zhao, H.;
Liu, L.; Guo, Q. X. Org. Lett. 2003, 5, 1833–1835. (l)
Samoshin, V. V.; Gremyachinskiy, D. E.; Smith, L. L.;
Bliznets, I. V.; Gross, P. H. Tetrahedron Lett. 2002, 43,
6
329–6330. (m) Tan, X. H.; Hou, Y. Q.; Shen, B.; Liu, L.;
Guo, Q. X. Tetrahedron Lett. 2004, 45, 5525–5528. (n) Tan,
X. H.; Hou, Y. Q.; Huang, C.; Liu, L.; Guo, Q. X. Tetrahedron
2
004, 60, 6129–6136. (o) Zhou, C. L.; Chou, Y. Q.; Jiang,
J. Y.; Xie, Z.; Wang, Z. Y.; Zhang, J. H.; Wu, J. H.; Yin, H.
Tetrahedron Lett. 2004, 45, 5537–5540.
. (a) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc.
5
1
993, 115, 8467–8468. (b) Yanagisawa, A.; Nakashima, H.;
Ishita, A.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118,
723–4724. (c) Kundu, A.; Prabhakar, S.; Vairamani, M.; Roy,
4
1
7. In fact, as reported in Ref. 13a, the g-addition product can also
be selectively yielded when Al is used as a catalyst in the
allylation reaction mediated by regular tin. This also suggests
that the allylation reaction mediated by regular tin requires
heat (or ultrasonic irradiation) or the use of catalyst (HBr or
Al) to promote the formation of covalent organometallic
intermediates.
S. Organometallics 1999, 18, 2782–2785. (d) Hamada, T.;
Manabe, K.; Kobayashi, S. Angew. Chem. Int. Ed. 2003, 42,
3
927–3930. (e) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103,
763–2793. (f) Marshall, J. A. Chem. Rev. 1996, 96, 31–47.
2
6
. For example of nanometer-sized particles used as hetero-
geneous catalysts, see (a) Roucoux, A.; Schulz, J.; Patin, H.
Chem. Rev. 2002, 102, 3757–3778. (b) Lewis, L. N. Chem.
Rev. 1993, 93, 2693–2730. (c) Moreno-Manas, M.; Pleixats, R.
Acc. Chem. Res. 2003, 36, 638–643. (d) Crooks, R. M.; Zhao,
18. Zha, Z. G.; Xie, Z.; Zhou, C. L.; Chang, M. X.; Wang, Z. Y.
New. J. Chem. 2003, 27, 1297–1300.