Reaction rate accelerations were previously observed for artifi-
cial metalloenzymes resulting from the supramolecular or covalent
anchoring of metal complexes to biopolymers as compared to the
8 J. Faller and J. Parr, Curr. Org. Chem., 2006, 10, 151–163; D. Carmona,
M. P. Lamata and L. A. Oro, Coord. Chem. Rev., 2000, 200–202, 717–
7
72; D. Carmona, C. Vega, N. Garcia, F. J. Lahoz, S. Elipe, L. A.
Oro, M. P. Lamata, F. Viguri and R. Borao, Organometallics, 2006, 25,
1592–1606; A. J. Davenport, D. L. Davies, J. Fawcett, S. A. Garratt and
D. R. Russell, J. Chem. Soc., Dalton Trans., 2000, 4432–4441; D. L.
Davies, J. Fawcett, S. A. Garratt and D. R. Russell, Organometallics,
3,22
metal cofactors alone. Flavopapains were also more efficient
12
catalysts than the flavin analogues alone. In the present case,
the enhanced catalytic activity of the metal complex embedded
within the protein may be due to an increase of its Lewis acid
character owing to the confining of the metallic entity that in turn
activates the carbonyl group of the dienophile in a more efficient
manner.
2
001, 20, 3029–3034; A. E. Diaz-Alvarez, P. Crochet, M. Zablocka, C.
Duhayon, V. Cadierno, J. Gimeno and J. P. Majoral, Adv. Synth. Catal.,
2006, 348, 1671–1679.
9
D. Carmona, C. Cativiela, S. Elipe, F. J. Lahoz, M. P. Lamata, M. Pilar,
L. R. de Viu, L. A. Oro, C. Vega and F. Viguri, Chem. Commun., 1997,
2
351–2352.
6
In conclusion, covalent anchoring of an (h -arene) ruthe-
1
0 P. Haquette, B. Dumat, B. Talbi, S. Arbabi, J.-L. Renaud, G. Jaouen and
M. Salmain, J. Organomet. Chem., 2009, 694, 937–941; P. Haquette, M.
Salmain, K. Svedlung, A. Martel, B. Rudolf, J. Zakrzewski, S. Cordier,
T. Roisnel, C. Fosse and G. Jaouen, ChemBioChem, 2007, 8, 224–231.
1 P. Haquette, B. Talbi, S. Canaguier, S. Dagorne, C. Fosse, A. Martel,
G. Jaouen and M. Salmain, Tetrahedron Lett., 2008, 49, 4670–4673.
2 J. T. Slama, C. Radziejewski, S. Oruganti and E. T. Kaiser, J. Am. Chem.
Soc., 1984, 106, 6778–6785.
nium(II) complex to the cysteine endoproteinase papain yielded
an artificial metalloenzyme with a turnover frequency on a Diels–
Alder increased by two orders of magnitude with respect to the
complex alone.
1
1
1
Notes and references
3 H. L. Levine and E. T. Kaiser, J. Am. Chem. Soc., 1980, 102, 343–345;
H. L. Levine and E. T. Kaiser, J. Am. Chem. Soc., 1978, 100, 7670–
The first-order rate constant of hydrolysis of 1a was equal to 0.0088 min-1
‡
7
677; H. L. Levine, Y. Nakagawa and E. T. Kaiser, Biochem. Biophys.
at room temperature, giving a half-life of 79 min (see ESI†).
Res. Commun., 1977, 76, 64–70.
1
C. Letondor and T. R. Ward, ChemBioChem, 2006, 7, 1845–1852; Y.
Lu, Angew. Chem., Int. Ed., 2006, 45, 5588–5601; J. Steinreiber and T.
R. Ward, Coord. Chem. Rev., 2008, 252, 751–766; D. Qi, C.-M. Tann,
D. Haring and M. D. Distefano, Chem. Rev., 2001, 101, 3081–3111; Y.
Lu, Curr. Opin. Chem. Biol., 2005, 9, 118–126; T. R. Ward, Chem.–Eur.
J., 2005, 11, 3798–3804; G. Roelfes, Mol. BioSyst., 2007, 3, 126–135;
A. Pordea and T. R. Ward, Chem. Commun., 2008, 4239–4249; J. C.
Mao and T. R. Ward, Chimia, 2008, 62, 956–961; M. D. Mihovilovic, J.
Chem. Technol. Biotechnol., 2007, 82, 1067–1071; R. Kr a¨ mer, Angew.
Chem., Int. Ed., 2006, 45, 858–860.
14 L. Panella, J. Broos, J. Jin, M. W. Fraaije, D. B. Janssen, M. Jeromius-
Stratingh, B. L. Feringa, A. J. Minnaard and J. G. de Vries, Chem.
Commun., 2005, 5656–5658; M. T. Reetz, M. Rentzsch, A. Pletsch and
M. Maywald, Chimia, 2002, 56, 721–723; M. T. Reetz, M. Rentzsch,
A. Pletsch, M. Maywald, P. Maiwald, J. J.-P. Peyralans, A. Maichele, Y.
Fu, N. Jiao, F. Hollmann, R. Mondi e` re and A. Taglieber, Tetrahedron,
2007, 63, 6404–6414.
15 C. X. Chen, B. Jiang, C. Branford-White and L. M. Zhu, Biochemistry
(Moscow), 2009, 74, 36–40.
16 D. C. Rideout and R. Breslow, J. Am. Chem. Soc., 1980, 102, 7816–
7817.
2
3
N. S. Oltra and G. Roelfes, Chem. Commun., 2008, 6039–6041; G.
Roefles, A. J. Boersma and B. L. Feringa, Chem. Commun., 2006, 635–
17 N. K. Sangwan and H.-J. Schneider, J. Chem. Soc., Perkin Trans. 2,
6
3
2
37; G. Roefles and B. L. Feringa, Angew. Chem., Int. Ed., 2005, 44,
230–3232; A. J. Boersma, B. L. Feringa and G. Roelfes, Org. Lett.,
007, 9, 3647–3650.
1989, 1223–1227.
18 W. Odenkirk, A. L. Rheingold and B. Bosnich, J. Am. Chem. Soc.,
1992, 114, 6392–6398.
A. J. Boersma, J. E. Klijn, B. L. Feringa and G. Roelfes, J. Am. Chem.
Soc., 2008, 130, 11783–11790.
19 F. Wang, H. Chen, S. Parsons, I. D. H. Oswald, J. E. Davidson and P.
J. Sadler, Chem.–Eur. J., 2003, 9, 5810–5820.
4
5
M. T. Reetz and N. Jiao, Angew. Chem., Int. Ed., 2006, 45, 2416–2419.
T. M. Tarasow, S. L. Tarasow and B. E. Eaton, J. Am. Chem. Soc., 2000,
20 S. P. Kim, A. G. Leach and K. N. Houk, J. Org. Chem., 2002, 67,
4250–4260.
1
22, 1015–1021.
21 A. B. Northrup and D. W. C. MacMillan, J. Am. Chem. Soc., 2002,
124, 2458–2460; K. A. Ahrendt, C. J. Borths and D. W. C. MacMillan,
J. Am. Chem. Soc., 2000, 122, 4243–4244.
22 F. van de Velde, L. K o¨ nemann, F. van Rantwijk and R. A. Sheldon,
Chem. Commun., 1998, 1891–1982; J. R. Carey, S. K. Ma, T. D. Pfister,
D. K. Garner, H. K. Kim, J. A. Abramite, Z. Wang, Z. Guo and Y. Lu,
J. Am. Chem. Soc., 2004, 126, 10812–10813; J. Collot, N. Humbert, M.
Skander, G. Klein and T. R. Ward, J. Organomet. Chem., 2004, 689,
4868–4871; U. E. Rusbandi, C. Lo, M. Skander, A. Ivanovna, M. Creus,
N. Humbert and T. R. Ward, Adv. Synth. Catal., 2007, 349, 1923–1930.
6
S. Otto and J. B. F. N. Engberts, J. Am. Chem. Soc., 1999, 121, 6798–
6
1
808; S. Otto, F. Bertoncin and J. B. F. N. Engberts, J. Am. Chem. Soc.,
996, 118, 7702–7707; K. Ishihara, M. Fushimi and M. Akakura, Acc.
Chem. Res., 2007, 40, 1049–1055.
F. Fringuelli, O. Piermatti, F. Pizzo and L. Vaccaro, Eur. J. Org. Chem.,
7
2
2
001, 439–455; T.-P. Loh and G.-L. Chua, Chem. Commun., 2006, 2739–
749; T.-P. Loh, J. Pei and M. Lin, Chem. Commun., 1996, 2315–2316;
K. E. Litz, Molecules, 2007, 12, 1674–1678; I.-H. Chen, J.-N. Young
and S. J. Yu, Tetrahedron, 2004, 60, 11903–11909.
This journal is © The Royal Society of Chemistry 2010
Dalton Trans., 2010, 39, 5605–5607 | 5607