Effect of â-Cyclodextrin on Trifluoroacetate Hydrolysis
J . Org. Chem., Vol. 66, No. 12, 2001 4401
Ta ble 2. Ster ic En er gy (SE, k ca l/m ol), Hea t of
F or m a tion (∆Hf, k ca l/m ol), F r ee En er gy of F or m a tion
∆Gf, k ca l/m ol), a s Obta in ed by th e MM3 Ca lcu la tion s on
Sp ecies In volved in Mech a n ism s a a n d b (see text)
(
SE
∆Hf
∆Gf
watera
â-CD
4H
0.00
62.70
9.40
55.49
5.47
45.53
61.48
24.96
67.99
13.54
49.94
69.27
-57.85
-1463.54
51.61
-54.69
750.24
74.69
823.54
84.79
830.67
832.31
73.14
817.61
76.5
with H
with F
4
5
5
6
H/â-CDb
-1430.89
H
16.33
H/â-CDb
-1472.33
-1402.46
-64.67
-1550.24
-108.59
-1599.95
-1526.69
H
4F
4
5
5
6
F /â-CDb
F
F /â-CDb
F
816.14
823.40
a
Experimental thermodynamic values obtained from General
Chemistry; Atkins, P. W., Ed.; Scientific Am. Books: New York,
1
989. b Represents the complex of the corresponding compound
with â-CD.
Tetrahedral compounds 5H, 5F , 6H, and 6F were
calculated as models for the transition states for the
hydrolysis reactions. Compounds 6 represent the tetra-
hedral intermediates formed by the attack of one of the
secondary OH groups of â-CD on the carbonyl carbons
of the esters, and they are models for the transition states
in the CD-catalyzed pathways.
The hydrolysis pathways considered were the follow-
ing:
(a) The normal acyl cleavage mechanism of ester
hydrolysis in basic media. MM calculations cannot be
undertaken on the hydroxyl anion because of the absence
of parameters, and we used the protonated species as
suitable reaction models (eq 2).
F igu r e 3. The four substrate orientations considered for the
emulation of the complexation of 4H and 4F by molecular
mechanics (MM3) calculations.
Ta ble 1. Ca lcu la ted (MM3) Rela tive Ster ic En er gy (r el
SE, in k ca l/m ol) for th e Min im ized Str u ctu r es of th e
Com p lexes of 4H a n d 4F w ith â-Cyclod extr in in th e F ou r
Or ien ta tion s Con sid er ed (see F igu r e 3)
(
b) Complexation of 4H or 4F , followed by the forma-
tion of 6H or 6F , respectively, which are finally trans-
formed into the products, eqs 3 and 4.
rel SE (kcal/mol)
orientation
4H
4F
A
B
C
D
0.0
7.5
6.2
9.2
0.0
6.9
6.3
4.1
The computed energies for reactants, complexes and
intermediates involved in each mechanism are shown in
Table 2.
4
.1 for 4H and 4F , respectively), in agreement with the
higher hydrophobicity of the CF group.
Considering mechanism a (eq 2), it is worth noting here
that reactions involving fluorinated compounds are com-
puted to be faster than the corresponding nonfluorinated
compounds in agreement with what has also been
experimentally observed. The ∆∆G value calculated using
the data shown in Table 2 for 4H and 4F reacting
3
(
13) (a) J aime, C.; Redondo, J .; S a´ nchez-Ferrando, F.; Virgili, A. J .
Org. Chem. 1990, 55, 4773-4776. (b) Redondo, J .; J aime, C.; Virgili,
A.; S a´ nchez-Ferrando, F. J . Mol. Struct. 1991, 248, 317-329. (c)
Fotiadu, F.; Fathallah, M.; J aime, C. J . Inclusion Phenom. 1993, 16,
5-62. (d) Fathallah, M.; Fotiadu, F.; J aime, C. J . Org. Chem. 1994,
9, 1288-1293. (e) P e´ rez, F.; J aime, C.; S a´ nchez-Ruiz, X. J . Org. Chem.
995, 60, 3840-3845. (f) Ivanov, P. M.; J aime, C. An. Qu ı´ m., Int. Ed.
996, 92, 13-16. (g) Ivanov, P. M.; J aime, C. J . Mol. Struct. 1996,
77, 137-147. (h) Salvatierra, D.; Ivanov, P. M.; J aime, C. J . Org.
Chem. 1996, 61, 7012-7017. (i) Salvatierra, D.; J aime, C.; Virgili, A.;
S a´ nchez-Ferrando, F. J . Org. Chem. 1996, 61, 9578-9581. (j) Entrena,
A.; J aime, C. J . Org. Chem. 1997, 62, 5923-5927. (k) Cervell o´ , E.;
J aime, C. J . Mol. Struct. (THEOCHEM) 1998, 428, 195-201. (l)
S a´ nchez-Ruiz, X.; Ramos, M.; J aime, C. J . Mol. Struct. (THEOCHEM)
5
5
1
1
3
17
according to eq 2 is 6.8. These data indicate that 4F
should be about 900 times more reactive than 4H. The
-
4
-1
observed differences in reactivity, i.e., 7.34 × 10
s
at
11
-1
pH 10.6 for phenyl acetate and 71.6 s at pH 9.91 for
(15) Parameters for the aryl ester are not available and were
replaced by those of an allyl ester. Parameters used were: 3-75-50
(kb ) 0.770, θ ) 106.8), 1-3-75-50 (V1 ) -2.500, V2 ) 1.390, V3 )
0.000), 7-3-75-50 (V1 ) 0.000, V2 ) 0.000, V3 ) 0.000), 6-1-6-50
(V1 ) 0.000, V2 ) 0.000, V3 ) 0.180), 11-1-3-75 (V1 ) 0.848, V2 )
0.000, V3 ) 0.000).
1
4
998, 442, 93-101. (m) Cervell o´ , E.; J aime, C. An. Qu ı´ m., Int. Ed. 1998,
-5, 244-249. (n) Salvatierra, D.; S a´ nchez-Ruiz, X.; Gardu n˜ o, R.;
Cervell o´ , E.; J aime, C.; Virgili, A.; S a´ nchez-Ferrando, F. Tetrahedron,
2
000, 56, 3035-3041. (o) Cervell o´ , E.; Mazzucchi, F.; J aime, J . Mol.
Struct. (THEOCHEM) 2000, 530, 155-163.
14) Allinger, N. L.; Yuh, Y. H.; Lii, J . H. J . Am. Chem. Soc. 1989,
11, 8551, 8566, and 8576.
(16) Allinger, N. L. Molecular Mechanics; ACS Monograph 177;
American Chemical Society: Washington, DC, 1982; p 4.
(
(17) These numbers were obtained as follows ∆∆G
f f
) [∆G (5H) -
1
∆G (4H)] - [∆G (5F ) - ∆G (4F )].
f
f
f