and inter- or intramolecular hydroarylation of alkynes7 have
been reported. Since catalytic dual activation is of interest
from the perspective of atom economy, we are interested to
explore gold-catalyzed tandem hydroamination-hydroary-
lation as a possible synthetic strategy for substituted 1,2-
dihydroquinolines, particularly under microwave-assisted
conditions to shorten the reaction time.5l
Scheme 1
The gold complexes 1a,8 1b,9 1c,10 and 1d10 employed in
this work were prepared by literature methods. We examined
2A-K with alkynes 3a-i to give dihydroquinoline deriva-
tives 4 and/or 4′ (Scheme 1) in 42-94% yields (Table 1; a
control experiment with AgOTf/NH4PF6 as catalyst afforded
4Aa in 2% NMR yield).
Table 1. Gold(I)-Catalyzed Reactions between Primary
Arylamines 2A-K and Alkynes under Microwave Irradiationa
the reaction of m-anisidine (2A) with phenylacetylene (3a)
at 80-100 °C in the presence of 5 mol % of these gold
catalysts, which gave 1,2-dihydroquinoline derivative 4Aa
in up to 80% yields after 12-24 h (Table S1 in the
Supporting Information). Upon microwave irradiation, the
reaction time considerably shortened to 25 min, with the best
result obtained for the Au(I) catalyst 1c/AgOTf with
CH3CN as solvent in the presence of additive NH4PF6 (Table
S2 in the Supporting Information). Under these conditions,
1c/AgOTf catalyzed the reactions of primary arylamines
(4) For selected reviews on gold catalysis, see: (a) Hashmi, A. S. K.
Gold Bull. 2003, 36, 3. (b) Hashmi, A. S. K. Gold Bull. 2004, 37, 51. (c)
Arcadi, A.; Di Giuseppe, S. Curr. Org. Chem. 2004, 8, 795. (d) Hoffman-
Ro¨der, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387. (e) Hashmi, A. S.
K. Angew. Chem., Int. Ed. 2005, 44, 6990. (f) Ma, S.; Yu, S.; Gu, Z. Angew.
Chem., Int. Ed. 2006, 45, 200. (g) Hashmi, A. S. K.; Hutchings, G. J. Angew.
Chem., Int. Ed. 2006, 45, 7896.
(5) For recent examples of gold catalysis, see: (a) Hashmi, A. S. K.;
Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000, 122, 11553. (b) Yao, X.;
Li, C.-J. J. Am. Chem. Soc. 2004, 126, 6884. (c) Hashmi, A. S. K.;
Weyrauch, J. P.; Rudolph, M.; Kurpejovic´, E. Angew. Chem., Int. Ed. 2004,
43, 6545. (d) Zhang, J.; Yang, C.-G.; He, C. J. Am. Chem. Soc. 2006, 128,
1798. (e) Genin, E.; Toullec, P. Y.; Antoniotti, S.; Brancour, C.; Geneˆt,
J.-P.; Michelet, V. J. Am. Chem. Soc. 2006, 128, 3112. (f) Zhang, Z.; Liu,
C.; Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R. A. J. Am. Chem.
Soc. 2006, 128, 9066. (g) Sun, J.; Conley, M. P.; Zhang, L.; Kozmin, S. A.
J. Am. Chem. Soc. 2006, 128, 9705. (h) Horino, Y.; Luzung, M. R.; Toste,
F. D. J. Am. Chem. Soc. 2006, 128, 11364. (i) Dube´, P.; Toste, F. D. J.
Am. Chem. Soc. 2006, 128, 12062. (j) Zhou, C.-Y.; Chan, P. W. H.; Che,
C.-M. Org. Lett. 2006, 8, 325. (k) Lo, V. K.-Y.; Liu, Y.; Wong, M.-K.;
Che, C.-M. Org. Lett. 2006, 8, 1529. (l) Liu, X.-Y.; Li, C.-H.; Che, C.-M.
Org. Lett. 2006, 8, 2707. (m) Youn, S. W. J. Org. Chem. 2006, 71, 2521.
(n) Hashmi, A. S. K.; Blanco, M. C.; Kurpejovic´, E.; Frey, W.; Bats, J. W.
AdV. Synth. Catal. 2006, 348, 709. (o) Hashmi, A. S. K.; Salathe´, R.; Frey,
W. Chem.-Eur. J. 2006, 12, 6991.
(6) Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349.
(7) For examples, see: (a) Reetz, M. T.; Sommer, K. Eur. J. Org. Chem.
2003, 3485. (b) Shi, Z.; He, C. J. Org. Chem. 2004, 69, 3669. (c) Nevado,
C.; Echavarren, A. M. Chem.-Eur. J. 2005, 11, 3155. (d) Hashmi, A. S.
K.; Blanco, M. C.; Kurpejovic´, E.; Frey, W.; Bats, J. W. AdV. Synth. Catal.
2006, 348, 709. (e) Hashmi, A. S. K.; Blanco, M. C. Eur. J. Org. Chem.
2006, 4340. (f) Hashmi, A. S. K.; Haufe, P.; Schmid, C.; Rivas Nass, A.;
Frey, W. Chem.-Eur. J. 2006, 12, 5376. (g) Gorin, D. J.; Dube´, P.; Toste,
F. D. J. Am. Chem. Soc. 2006, 128, 14480. (h) Marion, N.; D´ıez-Gonza´lez,
S.; de Fre´mont, P.; Noble, A. R.; Nolan, S. P. Angew. Chem., Int. Ed. 2006,
45, 3647. (i) Toullec, P. Y.; Genin, E.; Leseurre, L.; Geneˆt, J.-P.; Michelet,
V. Angew. Chem., Int. Ed. 2006, 45, 7427.
entry substrates
product(s)
4Aa
2A + 3b 4Ab
2A + 3c 4Ac
2A + 3d 4Ad
time (min)/P (W) yieldb (%)
1
2
2A + 3a
25/26
30/25
40/24
40/30
60/26
60/40
70/47
60/43
60/28
35/19
45/20
40/23
40/25
40/26
70/21
70/29
40/21
40/26
30/28
82
81
73
83
89
71
42
64
3
4
5
6
7
2A + 3e
2A + 3f
2A + 3g
4Ae
4Af
4Ag
8
9
2A + 3h 4Ah
2A + 3i 4Ai
52
78
10
11
12
13
14
15
16
17
18
19
2B + 3a 4′Ba
2C + 3a 4Ca + 4′Ca
2D + 3a 4Da
2E + 3a
2F + 3a
2G + 3a 4Ga
2H + 3a 4Ha
2I + 3a
2J + 3a
2K + 3a 4Ka + 4′Ka
84 (11:10)
71
4Ea + 4′′Ea
4Fa
85 (8:7)
74
62;c 71d
54c
4Ia
4Ja
69c
65
94 (27:67)
(8) Nieto-Oberhuber, C.; Lo´pez, S.; Echavarren, A. M. J. Am. Chem.
Soc. 2005, 127, 6178.
(9) Barnholtz, S. L.; Lydon, J. D.; Huang, G.; Venkatesh, M.; Barnes,
C. L.; Ketring, A. R.; Jurisson, S. S. Inorg. Chem. 2001, 40, 972.
(10) de Fre´mont, P.; Scott, N. M.; Stevens, E. D.; Nolan, S. P.
Organometallics 2005, 24, 2411.
a Reaction conditions: 2 (0.5 mmol), 3 (2.5 mmol), 1c/AgOTf (0.025
mmol), NH4PF6 (0.075 mmol), CH3CN (1 mL), 150 °C with microwave
irradiation. b Isolated yield based on arylamine. c A 20-40% yield of imine
was obtained. d 1a/AgOTf was used as catalyst.
2646
Org. Lett., Vol. 9, No. 14, 2007