Full Paper
DFT[50]/BP86[51] level. We used the def2-TZVPP basis set[52] for all
atoms and a small grid (m4), with Grimme's dispersion corrections
(disp3 version).[53] The minima (no imaginary frequencies) were
characterised by calculating the Hessian matrix.
[9]
a) F. R. Keene, M. J. Ridd, M. R. Snow, J. Am. Chem. Soc. 1983, 105, 7075–
7081; b) J. P. Saucedo-Vázquez, V. M. Ugalde-Saldívar, A. R. Toscano,
P. M. H. Kroneck, M. E. Sosa-Torres, Inorg. Chem. 2009, 48, 1214–1222; c)
G. J. Christian, A. Arbuse, X. Fontrodona, M. A. Martinez, A. Llobet, F.
Maseras, Dalton Trans. 2009, 6013–6020.
Supporting Information (see footnote on the first page of this
[10]
J. Gómez, G. García-Herbosa, J. V. Cuevas, A. Arnáiz, A. Carbayo, A. Mu-
ñoz, L. Falvello, P. E. Fanwick, Inorg. Chem. 2006, 45, 2483–2493.
article): NMR spectra, crystallographic details, computational details.
[11]
[12]
G. J. Christian, A. Llobet, F. Maseras, Inorg. Chem. 2010, 49, 5977–5985.
a) W. Kaim, Inorg. Chem. 2011, 50, 9752–9765; b) V. Lyaskovskyy, B.
de Bruin, ACS Catal. 2012, 2, 270–279; c) J. I. van der Vlugt, Eur. J. Inorg.
Chem. 2012, 363–375; d) V. K. K. Praneeth, M. R. Ringenberg, T. R. Ward,
Angew. Chem. Int. Ed. 2012, 51, 10228–10234; Angew. Chem. 2012, 124,
10374; e) O. R. Luca, R. H. Crabtree, Chem. Soc. Rev. 2013, 42, 1440–1459;
f) D. L. J. Broere, R. Plessius, J. I. van der Vlugt, Chem. Soc. Rev. 2015, 44,
6886–6915.
Acknowledgments
This research was funded by the Netherlands Research Council
– Chemical Sciences (NWO-CW) through an ECHO research
grant. The Spanish Ministerio de Economía y Competitividad
(MINECO) and Fondos Europeos para el Desarrollo Regional
(FEDER) (CTQ2014-53033-P) is also acknowledged.
[13]
a) B. de Bruin, T. P. J. Peters, N. N. F. A. Suos, D. Gelder, J. M. M. Smits,
A. W. Gal, Inorg. Chim. Acta 2002, 337, 154–162; b) D. G. H. Hetterscheid,
B. de Bruin, J. M. M. Smits, A. W. Gal, Organometallics 2003, 22, 3022–
3024; c) D. G. H. Hetterscheid, M. Klop, R. J. N. A. M. Kicken, J. M. M.
Smits, E. J. Reijerse, B. de Bruin, Chem. Eur. J. 2007, 13, 3386–3405; d) C.
Tejel, M. A. Ciriano, M. P. del Río, D. G. H. Hetterscheid, N. Tsichlis i Spithas,
J. M. M. Smits, B. de Bruin, Chem. Eur. J. 2008, 14, 10932–10936; e) C.
Tejel, M. P. del Río, M. A. Ciriano, E. J. Reijerse, F. Hartl, S. Záliš, D. G. H.
Hetterscheid, N. Tsichlis i Spithas, B. de Bruin, Chem. Eur. J. 2009, 15,
11878–11889.
Keywords: Carbenes · Iridium · Ketene · Ligand design ·
Redox chemistry · Rhodium
[1] a) J. Choi, A. H. R. MacArthur, M. Brookhart, A. S. Goldman, Chem. Rev.
2011, 111, 1761–1779; b) G. E. Dobereiner, R. H. Crabtree, Chem. Rev.
2010, 110, 681–703; c) I. W. C. E. Arends, R. A. Sheldon, in: Modern Oxid-
ation Methods (Ed.: J.-E. Bäckvall), Wiley-VCH, Weinheim, Germany, 2004,
p. 83–118; d) M. Beller, C. Bolm, in: Transition Metals for Organic Synthesis,
2nd ed., (Ed.: S.-I. Murahashi, Y. Imada), Wiley-VCH, Weinheim, Germany,
2004, 2, p. 497–507; e) J. Finney, H.-J. Moon, T. Ronnebaum, M. Lantz, M.
Mure, Arch. Biochem. Biophys. 2014, 546, 19–32; f) D. Rokhsana, E. M.
Shepard, D. E. Brown, D. M. Dooley in: Copper-Oxygen Chemistry (Eds.: S.
Rokita, K. D. Karlin, S. Itoh), Wiley, Hoboken, NJ, USA, 2011, chapter 3, p.
53–106.
[14]
[15]
a) T. Büttner, J. Geier, G. Frison, J. Harmer, C. Calle, A. Schweiger, H.
Schönberg, H. Grützmacher, Science 2005, 307, 235–238; b) P. Maire, M.
Konigsmann, A. Sreekanth, J. Harmer, A. Schweiger, H. Grützmacher, J.
Am. Chem. Soc. 2006, 128, 6578–6580; c) Y. Miyazato, T. Wada, K. Tanaka,
Bull. Chem. Soc. Jpn. 2006, 79, 745–747; d) Y. Miyazato, T. Wada, J. T.
Muckerman, E. Fujita, K. Tanaka, Angew. Chem. Int. Ed. 2007, 46, 5728–
5730; Angew. Chem. 2007, 119, 5830.
a) C. Tejel, M. A. Ciriano, M. P. del Río, F. J. van den Bruele, D. G. H.
Hetterscheid, N. Tsichlis i Spithas, B. de Bruin, J. Am. Chem. Soc. 2008,
130, 5844–5845; b) C. Tejel, M. P. del Río, L. Asensio, F. J. van den Bruele,
M. A. Ciriano, N. Tsichlis i Spithas, D. G. H. Hetterscheid, B. de Bruin, Inorg.
Chem. 2011, 50, 7524; c) C. Tejel, L. Asensio, M. P. del Río, M. A. Ciriano,
B. de Bruin, J. A. López, M. A. Ciriano, Eur. J. Inorg. Chem. 2012, 512; d)
C. Tejel, L. Asensio, M. A. Ciriano, J. A. López, B. de Bruin, M. P. del Río,
Angew. Chem. Int. Ed. 2011, 50, 8839; Angew. Chem. 2011, 123, 9001; e)
Z. Tang, E. Otten, J. N. H. Reek, J. I. van der Vlugt, B. de Bruin, Chem. Eur.
J. 2015, 21, 12683–12693.
a) J. I. van der Vlugt, J. N. H. Reek, Angew. Chem. Int. Ed. 2009, 48, 8832–
8846; Angew. Chem. 2009, 121, 8990; b) J. R. Khusnutdinova, D. Milstein,
Angew. Chem. Int. Ed. 2015, 54, 12236–12273. For specific examples with
Rh and Ir, see: c) M. Feller, Y. Diskin-Posner, L. J. W. Shimon, E. Ben-Ari,
D. Milstein, Organometallics 2012, 31, 4083–4101; d) M. Feller, A. Karton,
G. Leitus, J. M. L. Martin, D. Milstein, J. Am. Chem. Soc. 2006, 128, 12400–
12401; e) M. Feller, E. Ben-Ari, Y. Diskin-Posner, R. Carmieli, L. Weiner, D.
Milstein, J. Am. Chem. Soc. 2015, 137, 4634–4637. See also: f) Y. Gloa-
guen, C. Rebreyend, M. Lutz, P. Kumar, M. Huber, J. I. van der Vlugt, S.
Schneider, B. de Bruin, Angew. Chem. Int. Ed. 2014, 53, 6814–6818;
Angew. Chem. 2014, 126, 6932.
[2] a) C. Binda, A. Mattevi, D. E. Edmondson, J. Biol. Chem. 2002, 277, 23973–
23976; b) N. S. Scrutton, Nat. Prod. Rep. 2004, 21, 722–730; c) D. E. Ed-
mondson, C. Binda, A. Mattevi, Arch. Biochem. Biophys. 2007, 464, 269–
276.
[3] a) G. J. Christian, A. Llobet, F. Maseras, Inorg. Chem. 2010, 49, 5977–5985;
b) J. P. Saucedo-Vázquez, V. M. Ugalde-Saldívar, A. R. Toscano, P. M. H.
Kroneck, M. E. Sosa-Torres, Inorg. Chem. 2009, 48, 1214–1222; c) G. J.
Christian, A. Arbuse, X. Fontrodona, M. A. Martinez, A. Llobet, F. Maseras,
Dalton Trans. 2009, 6013–6020; d) B. Zhu, M. Lazar, B. G. Trewyna, R. J.
Angelici, J. Catal. 2008, 260, 1–6; e) A. Machkour, D. Mandon, M. Lachkar,
R. Welter, Eur. J. Inorg. Chem. 2005, 158–161; f) V. Amendola, L. Fabbrizzi,
E. Mundum, P. Pallavicini, Dalton Trans. 2003, 773–774; g) X. Gu, W. Chen,
D. Morales-Morales, C. M. Jensen, J. Mol. Catal. A 2002, 189, 119–124; h)
F. R. Keene, Coord. Chem. Rev. 1999, 187, 121–149.
[16]
[4] C. Zhang, N. Jiao, Angew. Chem. Int. Ed. 2010, 49, 6174–6177; Angew.
Chem. 2010, 122, 6310.
[5] a) S. Aiki, A. Taketoshi, J. Kuwabara, T. Koizumi, T. Kanbara, J. Organomet.
Chem. 2011, 696, 1301–1304; b) A. Taketoshi, T. Koizumi, T. Kanbara,
Tetrahedron Lett. 2010, 51, 6457–6459; c) W. H. Bernskoetter, M. Broo-
khart, Organometallics 2008, 27, 2036–2045; d) K. Yamaguchi, N. Mizuno,
Angew. Chem. Int. Ed. 2003, 42, 1480–1483; Angew. Chem. 2003, 115,
1518.
[6] a) R. E. Rodríguez-Lugo, M. Trincado, M. Vogt, F. Tewes, G. Santiso-Quino-
nes, H. Grützmacher, Nat. Chem. 2013, 5, 342–347; for a reversed exam-
ple of active catalyst formation involving imine-to-amine-type ligand
transformation, see: b) A. Mikhailine, M. I. Maishan, A. J. Lough, R. H.
Morris, J. Am. Chem. Soc. 2012, 134, 12266–12280.
[17]
For oxidative loss of H2 in PNP ligands with aliphatic backbones, see: a)
M. Käß, A. Friedrich, M. Drees, S. Schneider, Angew. Chem. Int. Ed. 2009,
48, 905–907; Angew. Chem. 2009, 121, 922; b) A. Friedrich, M. Drees, M.
Käss, E. Herdtweck, S. Schneider, Inorg. Chem. 2010, 49, 5482–5494.
Z. Tang, S. Mandal, N. D. Paul, M. Lutz, P. Li, J. I. van der Vlugt, B. de Bruin,
Org. Chem. Front. 2015, 2, 1561–1577.
A triplet-like doublet of doublet with two small J constants close in value
(1.3–1.5 Hz), presumably one is 3JRh,H and the second is 3JH,H correspond-
ing to coupling with the C–H of the methyl group.
[18]
[19]
[7] See refs.[5c,5d] and: a) C. Jun, K. Chung, J. Hong, Org. Lett. 2001, 3, 301–
303; b) O. Saidi, A. J. Blacker, M. M. Farah, S. P. Marsden, J. M. J. Williams,
Angew. Chem. Int. Ed. 2009, 48, 7375–7378; Angew. Chem. 2009, 121,
7511; c) W. P. Gri, B. Reddy, A. G. F. Shoair, M. Suriaatmaja, A. J. P. White,
D. J. Williams, J. Chem. Soc., Dalton Trans. 1998, 2, 2819–2825.
[8] a) K. T. Tseng, A. M. Rizzi, N. K. Szymczak, J. Am. Chem. Soc. 2013, 135,
16352–16355; b) D. Talwar, A. Gonzalez-de-Castro, H. Y. Li, J. Xiao, Angew.
Chem. Int. Ed. 2015, 54, 5223–5227; Angew. Chem. 2015, 127, 5312; c) S.
Muthaiah, S. H. Hong, Adv. Synth. Catal. 2012, 354, 3045–3053.
[20]
[21]
C. Tejel, J. M. Villoro, M. A. Ciriano, J. A. López, E. Eguizabal, F. J. Lahoz,
V. I. Bakhmutov, L. A. Oro, Organometallics 1996, 15, 2967–2978.
The short distance of Rh2–C6 may indicate a σ-bond between the two
atoms and thus an sp3 carbon, but an almost square-planar bonding
geometry was found around C6 with N2, H6 and C5 [∠N2–C6–C5
116.36(14)°, ∠C5–C6–H6 119.7(12)°, ∠H6–C6–N2 123.1(12)°,
Σ =
359.2(17)°], pointing to an sp2-hybridized carbon atom.
Eur. J. Inorg. Chem. 2016, 963–974
973
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim