S. V. Ley et al.
2-methylpropanal ((S)-4a) was reacted with crotylation reagent (S,S)-1 to
yield olefin anti,syn-6a as a colourless oil (80%, d.r.=8:1). 1H NMR
(500 MHz, CDCl3): d=5.84 (ddd, J=7.3, 10.4, 17.5 Hz, 1H), 5.05–5.02
(m, 2H), 3.82 (dd, J=3.9, 9.9 Hz, 1H), 3.61–3.55 (m, 2H), 3.38 (dt, J=
4.6, 6.7 Hz, 1H), 2.35–2.27 (m, 1H), 1.82–1.73 (m, 1H), 1.03 (d, J=
6.8 Hz, 3H), 0.89 (d, J=7.1 Hz, 3H), 0.87 (s, 9H), 0.05 ppm (d, J=
2.1 Hz, 6H); 13C NMR (126 MHz, CDCl3): d=142.47, 113.88, 79.60,
67.98, 41.26, 36.62, 25.85, 18.14, 14.10, 13.40, À5.61, À5.64 ppm; IR
(ATR): n˜ =3510, 2929, 2858, 1463, 1253, 1075 cmÀ1; [a]D25 =+6.4 (c=2.00,
CHCl3). The spectroscopic data correspond to the literature.[4a]
Ley, I. F. McConvey, B. Al-Duri, G. A. Leeke, R. C. D. Santos,
tors: New Technology for Modern Chemistry, Wiley-VCH, Wein-
heim, 2000; q) A. M. Hafez, A. E. Taggi, H. Wack, W. J. Drury, T.
[2] Recent applications of flow chemistry from our group: a) J. Sedel-
3618–3621; b) C. H. Hornung, B. Hallmark, M. R. Mackley, I. R.
c) C. H. Hornung, B. Hallmark, M. Baumann, I. R. Baxendale, S. V.
I. R. Baxendale, S. V. Ley, Org. Lett. 2010, 12, 1596–1598; f) M. D.
2452; g) C. F. Carter, I. R. Baxendale, J. B. J. Pavey, S. V. Ley, Org.
dale, S. V. Ley, Synlett 2010, 749–752; i) Z. Qian, I. R. Baxendale,
S. V. Ley, Synlett 2010, 505–508; j) I. R. Baxendale, S. C. Schou, J.
I. R. Baxendale, M. OꢁBrien, J. B. J. Pavey, S. V. Ley, Org. Biomol.
6611–6625; n) A. Palmieri, S. V. Ley, A. Polyzos, M. Ladlow, I. R.
Baxendale, Beilstein J. Org. Chem. 2009, 5, No. 23; o) A. Palmieri,
S. V. Ley, K. Hammond, A. Polyzos, I. R. Baxendale, Tetrahedron
Procedure for the Marshall homopropargylation reaction under flow con-
ditions, employing an in-line work-up: A pre-dried (see above) Vapour-
tec R2+/R4 unit or Uniqsis FlowSyn was used as the flow-chemistry
platform, equipped with two sample loops (2 mL), a T-piece and a self-
made PTFE reactor coil (30 mL, inner diameter 0.5 mm). This reactor
coil was attached to an Omnifit glass column (6.6ꢂ10 mm), which was
filled with Quadrasil-TA (300 mg) and silica gel (300 mg), followed by a
back pressure regulator (100 psi). The T-piece and reaction coil were im-
mersed in a dry ice/acetone bath and the setup was purged with anhy-
drous CH2Cl2. A solution of aldehyde (2 mL, 0.1 m) and (tri-n-butylstann-
yl)-1,2-butadiene (12) in CH2Cl2 and a solution of BF3·OEt2 in CH2Cl2
(2 mL, 0.2 m) were injected into independent sample loops and pumped
at a combined rate of 0.5 mLminÀ1. The solution exiting the system was
collected for 3 h and concentrated in vacuo to give the desired homopro-
pargylic alcohol. By using this procedure, (R)-3-tert-butyldimethylsily-
loxy-2-methylpropanal ((R)-4a) was reacted with (M)-(tri-n-butylstanyl)-
1,2-butadiene ((M)-12) in the presence of BF3·OEt2 to yield diastereo-
merically pure (2R,3R,4S)-1-tert-butyldimethylsilyloxy-2,4-dimethyl-5-
butyn-3-ol (syn,syn-13a, d.r.>10:1, 54%, 28 mg, 0.11 mmol) as a colour-
less oil (purity >95% by 1H NMR spectroscopy). 1H NMR (400 MHz,
CDCl3): d=3.87 (dd, J=3.0, 9.8 Hz, 1H), 3.72 (dd, J=3.9, 9.8 Hz, 1H),
3.70–3.72 (m, 1H), 3.42 (d, J=1.5 Hz, 1H), 2.48–2.56 (m, 1H), 2.08–2.18
(m, 1H), 2.05 (d, J=2.0 Hz, 1H), 1.30 (d, J=6.8 Hz, 3H), 1.00 (d, J=
7.1 Hz, 3H), 0.92 (s, 9H), 0.08 ppm (s, 6H); 13C NMR (100 MHz,
CDCl3): d=86.4, 78.2, 69.9, 69.4, 36.3, 30.2, 25.9, 18.2, 17.7, 9.4, À5.6,
À5.7 ppm; IR (ATR): n˜ =3495, 3313, 2956, 2930, 2908, 2884, 2858, 1472,
1463, 1391, 1374, 1362, 1254, 1158, 1139, 1092, 1059, 1018, 1006, 990, 966,
939, 908, 834, 815, 776, 681, 666 cmÀ1; [a]D25 =À9.3 (c=0.74, CDCl3). The
spectroscopic data correspond to the literature.[13b]
[3] For an example of handling highly water-sensitive compounds in
flow, namely n-butyl lithium, see ref. [2d].
[4] a) W. R. Roush, K. Ando, D. B. Powers, A. D. Palkowitz, R. L. Hal-
[5] Vapourtec R2+ and R4 units are available from Vapourtec, Place
co.uk.
Acknowledgements
[6] C. F. Carter, H. Lange, I. R. Baxendale, S. V. Ley, J. Goode, N.
[8] H. Lange, C. F. Carter, M. Hopkin, A. Burke, J. G. Goode, I. R.
Baxendale, S. V. Ley, Chem. Sci. 2011, DOI: 10.1039/C0SC00603C.
[11] Chiral allenyltin species 12 was prepared according to J. A. Mar-
shall, H. Chobanian, Org. Synth. 2005, 82, 43–54.
[12] The FlowSyn unit is available from Uniqsis, 29 Station Road, She-
[13] The reaction displayed in Scheme 6a yielding stereotriad 13a has
been reported by Marshall and co-workers twice using different con-
1732: (S)-4a (1.38 mmol, 1 equiv), (P)-12 (1.6 equiv) and BF3·OEt2
7825–7831: (R)-4a (19.8 mmol, 1 equiv), (M)-12 (1.15 equiv) and
BF3·OEt2 (3.0 equiv).
[14] For use of a chiral allenyltin species in combination with MgBr2 as
the Lewis acid, see: a) ref. [13b]; b) J. A. Marshall, J. F. Perkins,
The authors thank Dr. J. B. J. Pavey and AstraZeneca (C.F.C.), the
Alexander von Humboldt Foundation and the EPSRC (H.L.), Mitsubishi
Tanabe Pharma (D.S.), the Royal Society (I.R.B.) and the BP Endow-
ment (S.V.L.) for funding.
[1] Selected reviews on the concepts, benefits, applications and tools of
680; b) X. Y. Mak, P. Laurino, P. H. Seeberger, Beilstein J. Org.
Chem. 2009, 5, No. 19; c) S. Y. Teh, R. Lin, L. H. Hung, A. P. Lee,
1655–1671; g) P. B. Mason, K. E. Proce, J. L. Steinbacher, A. R.
Baxendale, S. V. Ley in New Avenues to Efficient Chemical Synthe-
sis: Emerging Technologies (Ernst Schering Foundation Symposium
Proceedings) (Eds: P. H. Seeberger, T. Blume), Springer, Berlin,
2007, 151–185; i) A. Kirschning, W. Solodenko, K. Mennecke,
Mꢃller, G. Kolb, Chemical Micro Process Engineering: Processing
and Plants, Wiley-VCH, Weinheim, 2005; k) P. Hodge, Ind. Eng.
3404
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2011, 17, 3398 – 3405